single-jc.php

JACIII Vol.4 No.5 pp. 336-340
doi: 10.20965/jaciii.2000.p0336
(2000)

Paper:

Dynamic Multidimensional Wavelet Neural Network and Its Application

Jung-Heum Yon, Yong-Taek Kim, Jae-Yong Seo, and Hong-Tae Jeon

Department of Electronic Engineering, Chung-Ang University 221 Huksuk-dong, Dongjak-gu, Seoul 156-756, Korea

Received:
August 18, 2000
Accepted:
October 1, 2000
Published:
September 20, 2000
Keywords:
Wavelet theory, Dynamic multidimensional wavelet neural network, Underwater vehicle
Abstract

We propose an efficient neural network called a dynamic multidimensional wavelet neural network (DMWNN). Since the resulting network based on wavelet theory can provide the efficient representation of a nonlinear function and has the capability to keep some previous information for later use, it can perform effective dynamic mapping with lower input signal dimensions. These features of the DMWNN show one way to compensate for the weakness of the diagonal recurrent neural network (DRNN) and feed-forward wavelet neural network (FWNN). Effectiveness in application of the proposed neural network is also demonstrated through simulation results.

Cite this article as:
Jung-Heum Yon, Yong-Taek Kim, Jae-Yong Seo, and Hong-Tae Jeon, “Dynamic Multidimensional Wavelet Neural Network and Its Application,” J. Adv. Comput. Intell. Intell. Inform., Vol.4, No.5, pp. 336-340, 2000.
Data files:

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 20, 2021