single-au.php

IJAT Vol.19 No.4 pp. 458-469
doi: 10.20965/ijat.2025.p0458
(2025)

Research Paper:

Effect of Additional Compensator Based on Internal Model Principle for Motion Control

Xuan Gan* ORCID Icon, Mizuki Takeda** ORCID Icon, and Kaiji Sato**,† ORCID Icon

*Graduate School of Mechanical Engineering, Toyohashi University of Technology
1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan

**Department of Mechanical Engineering, Toyohashi University of Technology
Toyohashi, Japan

Corresponding author

Received:
February 2, 2025
Accepted:
May 19, 2025
Published:
July 5, 2025
Keywords:
precision motion control, internal model principle, nominal characteristic trajectory following, resonant controller
Abstract

High-precision motion control requires robust controllers that balance performance with design simplicity. Nominal characteristic trajectory following (NCTF) control has been effective in achieving precise motion without relying on accurate dynamic models or advanced control expertise. However, its performance is influenced by external signals, particularly reference inputs. This paper proposes an additional compensator based on the internal model principle (IMP) to simplify the design of controllers for high-precision motion control. To improve the sinusoidal tracking performance of an NCTF control system while preserving the simplicity of its control design, we implement an additional resonant (R) compensator with a sinusoidal structure, adhering to the IMP for an ideal control structure, without requiring additional parameter tuning. Additionally, a repetitive compensator, designed specifically for tracking periodic signals, and the classical cascade controller commonly used in industry are implemented for comparative performance evaluation. The effectiveness of the additional R compensator was verified through simulations and experiments using a ball-screw mechanism. The results show that incorporating the R compensator significantly reduces tracking errors for low-amplitude, high-frequency sinusoidal signals (2 µm at 5 Hz), achieving an 80% reduction in maximum tracking error. The findings demonstrate that the R compensator effectively enhances tracking precision while preserving the simplicity of NCTF control design.

Cite this article as:
X. Gan, M. Takeda, and K. Sato, “Effect of Additional Compensator Based on Internal Model Principle for Motion Control,” Int. J. Automation Technol., Vol.19 No.4, pp. 458-469, 2025.
Data files:
References
  1. [1] Z. Zhang, J. Yan, and T. Kuriyagawa, “Manufacturing technologies toward extreme precision,” Int. J. Extrem. Manuf., Vol.1, No.2, Article No.022001, 2019. https://doi.org/10.1088/2631-7990/ab1ff1
  2. [2] I. I. Iordachita, M. D. De Smet, G. Naus, M. Mitsuishi, and C. N. Riviere, “Robotic assistance for intraocular microsurgery: Challenges and perspectives,” Proc. IEEE, Vol.110, No.7, pp. 893-908, 2022. https://doi.org/10.1109/jproc.2022.3169466
  3. [3] M. S. Rana, H. R. Pota, and I. R. Petersen, “A survey of methods used to control piezoelectric tube scanners in high-speed AFM imaging,” Asian J. of Control, Vol.20, No.4, pp. 1379-1399, 2018. https://doi.org/10.1002/asjc.1728
  4. [4] B. A. Francis and W. M. Wonham, “The internal model principle of control theory,” Automatica, Vol.12, No.5, pp. 457-465, 1976. https://doi.org/10.1016/0005-1098(76)90006-6
  5. [5] B. A. Francis and W. M. Wonham, “The internal model principle for linear multivariable regulators,” Appl. Math. Optim., Vol.2, No.2, pp. 170-194, 1975. https://doi.org/10.1007/bf01447855
  6. [6] J. G. Ziegler and N. B. Nichols, “Optimum settings for automatic controllers,” J. of Fluids Engineering, Vol.64, No.8, pp. 759-765, 1942. https://doi.org/10.1115/1.4019264
  7. [7] K. Sato and G. J. Maeda, “A practical control method for precision motion—Improvement of NCTF control method for continuous motion control,” Precision Engineering, Vol.33, No.2, pp. 175-186, 2009. https://doi.org/10.1016/j.precisioneng.2008.05.006
  8. [8] G. J. Maeda and K. Sato, “Practical control method for ultra-precision positioning using a ballscrew mechanism,” Precision Engineering, Vol.32, No.4, pp. 309-318, 2008. https://doi.org/10.1016/j.precisioneng.2007.10.002
  9. [9] K. Sato, R. Hisamatsu, and K. Akamatsu, “Controller design for high-speed, ultra-precision positioning of a linear motion stage on a vibrating machine base stage control on a vibrating base,” Precision Engineering, Vol.80, pp. 10-19, 2023. https://doi.org/10.1016/j.precisioneng.2022.11.008
  10. [10] K. Sato and Y. Sano, “Practical and intuitive controller design method for precision positioning of a pneumatic cylinder actuator stage,” Precision Engineering, Vol.38, No.4, pp. 703-710, 2014. https://doi.org/10.1016/j.precisioneng.2014.03.006
  11. [11] K. Sato, “Practical high-precision motion control system based on nominal characteristic trajectory following control and simple feedforward element design methods,” Precision Engineering, Vol.75, pp. 55-66, 2022. https://doi.org/10.1016/j.precisioneng.2021.11.017
  12. [12] L. F. A. Pereira and A. S. Bazanella, “Tuning rules for proportional resonant controllers,” IEEE Trans. Contr. Syst. Technol., Vol.23, No.5, pp. 2010-2017, 2015. https://doi.org/10.1109/tcst.2015.2389655
  13. [13] R. Teodorescu, F. Blaabjerg, M. Liserre, and P. C. Loh, “Proportional-resonant controllers and filters for grid-connected voltage-source converters,” IEE Proc., Electr. Power Appl., Vol.153, Issue 5, pp. 750-762 2006. https://doi.org/10.1049/ip-epa:20060008
  14. [14] S. O. R. Moheimani and B. J. G. Vautier, “Resonant control of structural vibration using charge-driven piezoelectric actuators,” 43rd IEEE Conf. on Decision and Control (CDC), pp. 5368-5373, 2004. https://doi.org/10.1109/cdc.2004.1429661
  15. [15] Y. Tao, Z. Zhu, Q. Xu, H.-X. Li, and L. Zhu, “Tracking control of nanopositioning stages using parallel resonant controllers for high-speed nonraster sequential scanning,” IEEE Trans. Automat. Sci. Eng., Vol.18, No.3, pp. 1218-1228, 2021. https://doi.org/10.1109/tase.2020.2998773
  16. [16] Y. Wang, F. Gao, and F. J. Doyle III, “Survey on iterative learning control, repetitive control, and run-to-run control,” J. of Process Control, Vol.19, No.10, pp. 1589-1600, 2009. https://doi.org/10.1016/j.jprocont.2009.09.006
  17. [17] P. Mattavelli and F. P. Marafao, “Repetitive-based control for selective harmonic compensation in active power filters,” IEEE Trans. Ind. Electron., Vol.51, No.5, pp. 1018-1024, 2004. https://doi.org/10.1109/tie.2004.834961
  18. [18] S. T. Navalkar, J. W. van Wingerden, E. van Solingen, T. Oomen, E. Pasterkamp, and G. A. M. van Kuik, “Subspace predictive repetitive control to mitigate periodic loads on large scale wind turbines,” Mechatronics, Vol.24, No.8, pp. 916-925, 2014. https://doi.org/10.1016/j.mechatronics.2014.01.005
  19. [19] C. L. Chen, M. J. Jang, and K. C. Lin, “Modeling and high-precision control of a ball-screw-driven stage,” Precision Engineering, Vol.28, No.4, pp. 483-495, 2004. https://doi.org/10.1016/j.precisioneng.2004.03.001
  20. [20] C. Canudas-de-Wit, H. Olsson, K. J. Astrom, and P. Lischinsky, “A new model for control of systems with friction,” IEEE Trans. Automat. Contr., Vol.40, No.3, pp. 419-425, 1995. https://doi.org/10.1109/9.376053
  21. [21] S. Fukuda and T. Yoda, “A novel current-tracking method for active filters based on a sinusoidal internal model [for PWM invertors],” IEEE Trans. on Ind. Applicat., Vol.37, No.3, pp. 888-895, 2001. https://doi.org/10.1109/28.924772
  22. [22] B. Armstrong-Hélouvry, “Control of machines with friction,” Springer, 1991. https://doi.org/10.1007/978-1-4615-3972-8
  23. [23] K. Sato, “Antiwindup method for practical positioning control and its effect – Improvement of NCTF control –,” Proc. JSPE Semestrial Meeting 2004A (0), pp. 793-794, 2004 (in Japanese). https://doi.org/10.11522/pscjspe.2004A.0.495.0
  24. [24] Y. Altintas, A. Verl, C. Brecher, L. Uriarte, and G. Pritschow, “Machine tool feed drives,” CIRP Annals, Vol.60, No.2, pp. 779-796, 2011. https://doi.org/10.1016/j.cirp.2011.05.010
  25. [25] O. A. Vavilov, V. D. Yurkevich, and D. V. Korobkov, “Resonant PI-controller design based on the time-scale separation method for a two-level voltage inverter,” 2022 IEEE Int. Multi-Conf. on Engineering, Computer and Information Sciences (SIBIRCON), pp. 1360-1364, 2022. https://doi.org/10.1109/sibircon56155.2022.10017064
  26. [26] V. D. Yurkevich, “PIR-controller design based on time-scale separation method and internal model principle for harmonics disturbances suppression,” Optoelectron. Instrument. Proc., Vol.57, No.4, pp. 363-370, 2021. https://doi.org/10.3103/s8756699021040130
  27. [27] S. Hara, Y. Yamamoto, T. Omata, and M. Nakano, “Repetitive control system: A new type servo system for periodic exogenous signals,” IEEE Trans. Automat. Contr., Vol.33, No.7, pp. 659-668, 1988. https://doi.org/10.1109/9.1274
  28. [28] T. Tanaka, J. Otsuka, and T. Oiwa, “Precision positioning control by modeling frictional behaviors of linear ball guideway,” Int. J. Automation Technol., Vol.3, No.3, pp. 334-342, 2009. https://doi.org/10.20965/ijat.2009.p0334

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 04, 2025