single-au.php

IJAT Vol.19 No.4 pp. 432-440
doi: 10.20965/ijat.2025.p0432
(2025)

Research Paper:

Equivalent Circuit Model of Hysteresis in Stacked Piezoelectric Actuator Using Hyperbolic Tangent Function

Katsushi Furutani ORCID Icon

Department of Advanced Science and Technology, Toyota Technological Institute
2-12-1 Hisakata, Tempaku-ku, Nagoya, Aichi 468-8511, Japan

Corresponding author

Received:
January 5, 2025
Accepted:
February 21, 2025
Published:
July 5, 2025
Keywords:
piezoelectric actuator, hysteresis, initial polarization curve, equivalent circuit, hyperbolic tangent function
Abstract

This paper deals with an equivalent circuit model of a stacked piezoelectric actuator. The displacement of a piezoelectric actuator is usually controlled by adjusting the applied voltage. However, the displacement shows hysteresis relative to the applied voltage. The proposed model is based on Martin’s model for a stacked piezoelectric actuator in which the mechanical compliance is represented with a Cauer circuit composed of Zener diodes and nonlinear capacitances using hyperbolic tangent functions. The parameters were identified from the initial displacement during polarization or the hysteresis loop in a steady state. The trends of the hysteresis of the displacement relative to the applied voltage coincided with the results of experiments on static displacement and frequency characteristics. Less hysteresis in the displacement by controlling the supplied charge was also represented.

Cite this article as:
K. Furutani, “Equivalent Circuit Model of Hysteresis in Stacked Piezoelectric Actuator Using Hyperbolic Tangent Function,” Int. J. Automation Technol., Vol.19 No.4, pp. 432-440, 2025.
Data files:
References
  1. [1] J. Li, H. Huang, and T. Morita, “Stepping piezoelectric actuators with large working stroke for nano-positioning systems: A review,” Sensors and Actuators A: Physical, Vol.292, pp. 39-51, 2019. https://doi.org/10.1016/j.sna.2019.04.006
  2. [2] B. Ding, X. Li, C. Li, Y. Li, and S.-C. Chen, “A survey on the mechanical design for piezo-actuated compliant micro-positioning stages,” Review of Scientific Instruments, Vol.94, Article No.101502, 2023. https://doi.org/10.1063/5.0162246
  3. [3] X. Ma, J. Liu, S. Zhang, J. Deng, and Y. Liu, “Recent trends in bionic stepping piezoelectric actuators for precision positioning: A review,” Sensors and Actuators A: Physical, Vol.364, Article No.114830, 2023. https://doi.org/10.1016/j.sna.2023.114830
  4. [4] F. Wei, X. Wang, J. Dong, K. Guo, and Y. Sui, “Development of a three-degree-of-freedom piezoelectric actuator,” Review of Scientific Instruments, Vol.94, No.2, Article No.025001, 2023. https://doi.org/10.1063/5.0114030
  5. [5] M. Kanchan, M. Santhya, R. Bhat, and N. Naik, “Application of modeling and control approaches of piezoelectric actuators: A review,” Technologies, Vol.11, No.6, Article No.155, 2023. https://doi.org/10.3390/technologies11060155
  6. [6] X. Wei, Y. Yang, W. Yao, and L. Zhang, “PSpice modeling of a sandwich piezoelectric ceramic ultrasonic transducer in longitudinal vibration,” Sensors, Vol.17, No.10, Article No.2253, 2017. https://doi.org/10.3390/s17102253
  7. [7] H. Kino, N. Mori, S. Moribe, K. Tsuda, and K. Tahara, “Experiment verification and stability analysis of iterative learning control for shape memory alloy wire,” J. Robot. Mechatron., Vol.31, No.4, pp. 583-593, 2019. https://doi.org/10.20965/jrm.2019.p0583
  8. [8] A. L. Dror and A. Shapiro, “Sensorless model-based displacement estimator for piezoelectric actuator through a practical three-stage mechanism,” Heliyon, Vol.10, No.11, Article No.e30683, 2024. https://doi.org/10.1016/j.heliyon.2024.e30683
  9. [9] M. Goldfarb and N. Celanovic, “Modeling piezoelectric stack actuators for control of micromanipulation,” IEEE Control Systems Magazine, Vol.17, No.3, pp. 69-79, 1997. https://doi.org/10.1109/37.588158
  10. [10] H. Richter, E. A. Misawa, D. A. Lucca, and H. Lu, “Modeling nonlinear behavior in a piezoelectric actuator,” Precision Engineering, Vol.25, No.2, pp. 128-137, 2001. https://doi.org/10.1016/S0141-6359(00)00067-2
  11. [11] M. E. Semenov, S. V. Borzunov, P. A. Meleshenko, and N. I. Sel’vesyuk, “The Preisach model of hysteresis: Fundamentals and applications,” Physica Scripta, Vol.99, No.6, Article No.062008, 2024. https://doi.org/10.1088/1402-4896/ad4aa2
  12. [12] D. C. Jiles and D. L. Atherton, “Theory of ferromagnetic hysteresis,” J. of Magnetism and Magnetic Materials, Vol.61, Nos.1-2, pp. 48-60, 1986. https://doi.org/10.1016/0304-8853(86)90066-1
  13. [13] Z. Nie, C. Fu, R. Liu, D. Guo, and Y. Ma, “Asymmetric Prandtl–Ishlinskii hysteresis model for giant magnetostrictive actuator,” J. Adv. Comput. Intell. Intell. Inform., Vol.20, No.2, pp. 223-230, 2016. https://doi.org/10.20965/jaciii.2016.p0223
  14. [14] A. Khubab, Y. Peng, and L. Su, “Duhem model-based hysteresis identification in piezo-actuated nano-stage using modified particle swarm optimization,” Micromachines, Vol.12, No.3, Article No.315, 2021. https://doi.org/10.3390/mi12030315
  15. [15] S. Tsuruhara, R. Inada, and K. Ito, “Model predictive displacement control tuning for tap-water-driven artificial muscle by inverse optimization with adaptive model matching and its contribution analyses,” Int. J. Automation Technol., Vol.16, No.4, pp. 436-447, 2022. https://doi.org/10.20965/ijat.2022.p0436
  16. [16] C. Caremel, M. Ishige, T. Ta, and Y. Kawahara, “Echo state network for soft actuator control,” J. Robot. Mechatron., Vol.34, No.2, pp. 413-421, 2022. https://doi.org/10.20965/jrm.2022.p0413
  17. [17] J. Sun, J. Ren, W. Zhou, Q. Jiang, P. Wang, T. Sai, J. Tang, and J. Ye, “Research on the stress magnetic coupling effect of a permalloy based on an optimized Jiles Atherton model in magnetic shielding devices,” J. of Physics. D: Applied Physics, Vol.57, No.30, Article No.305006, 2024. https://doi.org/10.1088/1361-6463/ad415f
  18. [18] K. Furutani, M. Urushibata, and N. Mohri, “Displacement control of piezoelectric element by feedback of induced charge,” Nanotechnology, Vol.9, No.2, pp. 93-98, 1998. https://doi.org/10.1088/0957-4484/9/2/009
  19. [19] K. Furutani and K. Iida, “A driving method of piezoelectric actuator using current pulses,” Measurement Science and Technology, Vol.17, No.9, pp. 2387-2394, 2006. https://doi.org/10.1088/0957-0233/17/9/003
  20. [20] M. Mohammadzaheri, S. Al-Sulti, M. Ghodsi, and P. Soltani, “Charge estimation of piezoelectric actuators: A comparative study,” Energies, Vol.16, No.10, Article No.3982, 2023. https://doi.org/10.3390/en16103982
  21. [21] G. E. Martin, “On the theory of segmented electromechanical systems,” J. of Acoustics Society of America, Vol.36, No.7, pp. 1366-1370, 1964. https://doi.org/10.1121/1.1919209
  22. [22] M. Storace and M. Parodi, “On the representation of static hysteresis curves by a PWL ladder circuit,” Int. J. of Circuit Theory and Applications, Vol.26, No.2, pp. 167-177, 1998. https://doi.org/10.1002/(SICI)1097-007X(199803/04)26:2%3C167::AID-CTA988%3E3.0.CO;2-D
  23. [23] Z. Wł odarski, “Classical and hyperbolic approximation of hysteresis loops,” Physica B: Condensed Matter, Vol.389, No.2, pp. 347-350, 2007. https://doi.org/10.1016/j.physb.2006.07.015
  24. [24] Y. Sato, K. Kawano, D. Hou, J. Morroni, and H. Igarashi, “Cauer-equivalent circuit for inductors considering hysteresis magnetic properties for SPICE simulation,” IEEE Trans. on Power Electronics, Vol.35, No.9, pp. 9663-9670, 2020. https://doi.org/10.1109/TPEL.2020.2968749
  25. [25] S. Bobbio, G. Milano, C. Serpico, and C. Visone, “Models of magnetic hysteresis based on play and stop hysterons,” IEEE Trans. on Magnetism, Vol.33, No.6, pp. 4417-4426, 1997. https://doi.org/10.1109/20.649875
  26. [26] F. Preisach, “Über die magnetische Nachwirkung,” Zeitschrift für Physik, Vol.94, No.5, pp. 277-302, 1935 (in German). https://doi.org/10.1007/BF01349418

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 04, 2025