Research Paper:
Equivalent Circuit Model of Hysteresis in Stacked Piezoelectric Actuator Using Hyperbolic Tangent Function
Katsushi Furutani

Department of Advanced Science and Technology, Toyota Technological Institute
2-12-1 Hisakata, Tempaku-ku, Nagoya, Aichi 468-8511, Japan
Corresponding author
This paper deals with an equivalent circuit model of a stacked piezoelectric actuator. The displacement of a piezoelectric actuator is usually controlled by adjusting the applied voltage. However, the displacement shows hysteresis relative to the applied voltage. The proposed model is based on Martin’s model for a stacked piezoelectric actuator in which the mechanical compliance is represented with a Cauer circuit composed of Zener diodes and nonlinear capacitances using hyperbolic tangent functions. The parameters were identified from the initial displacement during polarization or the hysteresis loop in a steady state. The trends of the hysteresis of the displacement relative to the applied voltage coincided with the results of experiments on static displacement and frequency characteristics. Less hysteresis in the displacement by controlling the supplied charge was also represented.
- [1] J. Li, H. Huang, and T. Morita, “Stepping piezoelectric actuators with large working stroke for nano-positioning systems: A review,” Sensors and Actuators A: Physical, Vol.292, pp. 39-51, 2019. https://doi.org/10.1016/j.sna.2019.04.006
- [2] B. Ding, X. Li, C. Li, Y. Li, and S.-C. Chen, “A survey on the mechanical design for piezo-actuated compliant micro-positioning stages,” Review of Scientific Instruments, Vol.94, Article No.101502, 2023. https://doi.org/10.1063/5.0162246
- [3] X. Ma, J. Liu, S. Zhang, J. Deng, and Y. Liu, “Recent trends in bionic stepping piezoelectric actuators for precision positioning: A review,” Sensors and Actuators A: Physical, Vol.364, Article No.114830, 2023. https://doi.org/10.1016/j.sna.2023.114830
- [4] F. Wei, X. Wang, J. Dong, K. Guo, and Y. Sui, “Development of a three-degree-of-freedom piezoelectric actuator,” Review of Scientific Instruments, Vol.94, No.2, Article No.025001, 2023. https://doi.org/10.1063/5.0114030
- [5] M. Kanchan, M. Santhya, R. Bhat, and N. Naik, “Application of modeling and control approaches of piezoelectric actuators: A review,” Technologies, Vol.11, No.6, Article No.155, 2023. https://doi.org/10.3390/technologies11060155
- [6] X. Wei, Y. Yang, W. Yao, and L. Zhang, “PSpice modeling of a sandwich piezoelectric ceramic ultrasonic transducer in longitudinal vibration,” Sensors, Vol.17, No.10, Article No.2253, 2017. https://doi.org/10.3390/s17102253
- [7] H. Kino, N. Mori, S. Moribe, K. Tsuda, and K. Tahara, “Experiment verification and stability analysis of iterative learning control for shape memory alloy wire,” J. Robot. Mechatron., Vol.31, No.4, pp. 583-593, 2019. https://doi.org/10.20965/jrm.2019.p0583
- [8] A. L. Dror and A. Shapiro, “Sensorless model-based displacement estimator for piezoelectric actuator through a practical three-stage mechanism,” Heliyon, Vol.10, No.11, Article No.e30683, 2024. https://doi.org/10.1016/j.heliyon.2024.e30683
- [9] M. Goldfarb and N. Celanovic, “Modeling piezoelectric stack actuators for control of micromanipulation,” IEEE Control Systems Magazine, Vol.17, No.3, pp. 69-79, 1997. https://doi.org/10.1109/37.588158
- [10] H. Richter, E. A. Misawa, D. A. Lucca, and H. Lu, “Modeling nonlinear behavior in a piezoelectric actuator,” Precision Engineering, Vol.25, No.2, pp. 128-137, 2001. https://doi.org/10.1016/S0141-6359(00)00067-2
- [11] M. E. Semenov, S. V. Borzunov, P. A. Meleshenko, and N. I. Sel’vesyuk, “The Preisach model of hysteresis: Fundamentals and applications,” Physica Scripta, Vol.99, No.6, Article No.062008, 2024. https://doi.org/10.1088/1402-4896/ad4aa2
- [12] D. C. Jiles and D. L. Atherton, “Theory of ferromagnetic hysteresis,” J. of Magnetism and Magnetic Materials, Vol.61, Nos.1-2, pp. 48-60, 1986. https://doi.org/10.1016/0304-8853(86)90066-1
- [13] Z. Nie, C. Fu, R. Liu, D. Guo, and Y. Ma, “Asymmetric Prandtl–Ishlinskii hysteresis model for giant magnetostrictive actuator,” J. Adv. Comput. Intell. Intell. Inform., Vol.20, No.2, pp. 223-230, 2016. https://doi.org/10.20965/jaciii.2016.p0223
- [14] A. Khubab, Y. Peng, and L. Su, “Duhem model-based hysteresis identification in piezo-actuated nano-stage using modified particle swarm optimization,” Micromachines, Vol.12, No.3, Article No.315, 2021. https://doi.org/10.3390/mi12030315
- [15] S. Tsuruhara, R. Inada, and K. Ito, “Model predictive displacement control tuning for tap-water-driven artificial muscle by inverse optimization with adaptive model matching and its contribution analyses,” Int. J. Automation Technol., Vol.16, No.4, pp. 436-447, 2022. https://doi.org/10.20965/ijat.2022.p0436
- [16] C. Caremel, M. Ishige, T. Ta, and Y. Kawahara, “Echo state network for soft actuator control,” J. Robot. Mechatron., Vol.34, No.2, pp. 413-421, 2022. https://doi.org/10.20965/jrm.2022.p0413
- [17] J. Sun, J. Ren, W. Zhou, Q. Jiang, P. Wang, T. Sai, J. Tang, and J. Ye, “Research on the stress magnetic coupling effect of a permalloy based on an optimized Jiles Atherton model in magnetic shielding devices,” J. of Physics. D: Applied Physics, Vol.57, No.30, Article No.305006, 2024. https://doi.org/10.1088/1361-6463/ad415f
- [18] K. Furutani, M. Urushibata, and N. Mohri, “Displacement control of piezoelectric element by feedback of induced charge,” Nanotechnology, Vol.9, No.2, pp. 93-98, 1998. https://doi.org/10.1088/0957-4484/9/2/009
- [19] K. Furutani and K. Iida, “A driving method of piezoelectric actuator using current pulses,” Measurement Science and Technology, Vol.17, No.9, pp. 2387-2394, 2006. https://doi.org/10.1088/0957-0233/17/9/003
- [20] M. Mohammadzaheri, S. Al-Sulti, M. Ghodsi, and P. Soltani, “Charge estimation of piezoelectric actuators: A comparative study,” Energies, Vol.16, No.10, Article No.3982, 2023. https://doi.org/10.3390/en16103982
- [21] G. E. Martin, “On the theory of segmented electromechanical systems,” J. of Acoustics Society of America, Vol.36, No.7, pp. 1366-1370, 1964. https://doi.org/10.1121/1.1919209
- [22] M. Storace and M. Parodi, “On the representation of static hysteresis curves by a PWL ladder circuit,” Int. J. of Circuit Theory and Applications, Vol.26, No.2, pp. 167-177, 1998. https://doi.org/10.1002/(SICI)1097-007X(199803/04)26:2%3C167::AID-CTA988%3E3.0.CO;2-D
- [23] Z. Wł odarski, “Classical and hyperbolic approximation of hysteresis loops,” Physica B: Condensed Matter, Vol.389, No.2, pp. 347-350, 2007. https://doi.org/10.1016/j.physb.2006.07.015
- [24] Y. Sato, K. Kawano, D. Hou, J. Morroni, and H. Igarashi, “Cauer-equivalent circuit for inductors considering hysteresis magnetic properties for SPICE simulation,” IEEE Trans. on Power Electronics, Vol.35, No.9, pp. 9663-9670, 2020. https://doi.org/10.1109/TPEL.2020.2968749
- [25] S. Bobbio, G. Milano, C. Serpico, and C. Visone, “Models of magnetic hysteresis based on play and stop hysterons,” IEEE Trans. on Magnetism, Vol.33, No.6, pp. 4417-4426, 1997. https://doi.org/10.1109/20.649875
- [26] F. Preisach, “Über die magnetische Nachwirkung,” Zeitschrift für Physik, Vol.94, No.5, pp. 277-302, 1935 (in German). https://doi.org/10.1007/BF01349418
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.