single-au.php

IJAT Vol.19 No.1 pp. 4-14
doi: 10.20965/ijat.2025.p0004
(2025)

Research Paper:

Design of a Fixture for Additively Manufactured Workpieces Using Topology Optimization

Hayato Kitagawa*,†, Kozo Furuta* ORCID Icon, Yasuka Yoshida**, Iwao Yamaji*, and Daisuke Kono*

*Department of Micro Engineering, Kyoto University
Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8540, Japan

Corresponding author

**DMG MORI Co., Ltd.
Tokyo, Japan

Received:
May 23, 2024
Accepted:
October 28, 2024
Published:
January 5, 2025
Keywords:
additive manufacturing, powder bed fusion, post-process, fixture design, topology optimization
Abstract

Fixing powder bed fusion (PBF) workpieces during post-processing can be challenging owing to their complex geometries and low stiffness. Despite recent reports, fixture planning of PBF workpieces remains a laborious and operator-dependent process. This study proposes an adhesive-based dedicated fixture (ADF) and its design method based on topology optimization. ADF employs adhesives to fix the workpiece and is manufactured by PBF. To verify the effectiveness and reveal potential challenges, a case study using the designed ADF is presented. The proposed ADF offers a fixture planning solution that does not require specialized knowledge and is applicable regardless of the geometry or stiffness of the workpiece.

Cite this article as:
H. Kitagawa, K. Furuta, Y. Yoshida, I. Yamaji, and D. Kono, “Design of a Fixture for Additively Manufactured Workpieces Using Topology Optimization,” Int. J. Automation Technol., Vol.19 No.1, pp. 4-14, 2025.
Data files:
References
  1. [1] L. Lu, M. Sato, and H. Tanaka, “Experimental verification of chatter-free ball end milling strategy,” Int. J. Automation Technol., Vol.7 No.1, pp. 45-51, 2013. https://doi.org/10.20965/ijat.2013.p0045
  2. [2] Y. Sun, M. Zheng, S. Jiang, D. Zhan, and R. Wang, “A State-of-the-Art Review on Chatter Stability in Machining Thin-Walled Parts,” Machines, Vol.11, No.3, Article No.359, 2023. https://doi.org/10.3390/machines11030359
  3. [3] Y. Koike, A. Matsubara, S. Nishiwaki, K. Izui, and I. Yamaji, “Cutting path design to minimize workpiece displacement at cutting point: Milling of thin-walled parts,” Int. J. Automation Technol., Vol.6, No.5, pp. 638-647, 2012. https://doi.org/10.20965/ijat.2012.p0638
  4. [4] J. Zeng, K. Teramoto, and H. Matsumoto, “On-machine estimation of workholding state for thin-walled parts,” Int. J. Automation Technol., Vol.15, No.6, pp. 860-867, 2021. https://doi.org/10.20965/ijat.2021.p0860
  5. [5] G. Moroni, S. Petrò, and W. Polini, “Robust Design of Fixture Configuration,” Procedia CIRP, Vol.21, pp. 189-194, 2014. https://doi.org/10.1016/j.procir.2014.03.120
  6. [6] B. F. Wang and A. Y. C. Nee, “Robust fixture layout with the multi-objective non-dominated ACO/GA approach,” CIRP Ann., Vol.60, No.1, pp. 183-186, 2011. https://doi.org/10.1016/j.cirp.2011.03.006
  7. [7] H. Wang, Y. (K.) Rong, H. Li, and P. Shaun, “Computer aided fixture design: Recent research and trends,” Computer-Aided Design, Vol.42, No.12, pp. 1085-1094, 2010. https://doi.org/10.1016/j.cad.2010.07.003
  8. [8] R. Attila, M. Stampfer, and S. Imre, “Fixture and Setup Planning and Fixture Configuration System,” Procedia CIRP, Vol.7, pp. 228-233, 2013. https://doi.org/10.1016/j.procir.2013.05.039
  9. [9] A. Senthil Kumar, J. Y. H. Fuh, and T. S. Kow, “An automated design and assembly of interference-free modular fixture setup,” Computer-Aided Design, Vol.32, No.10, pp. 583-596, 2000. https://doi.org/10.1016/S0010-4485(00)00032-4
  10. [10] H. Hashemi, A. M. Shaharoun, and I. Sudin, “A case-based reasoning approach for design of machining fixture,” Int. J. Adv. Manuf. Technol., Vol.74, pp. 113-124, 2014. https://doi.org/10.1007/s00170-014-5930-4
  11. [11] I. M. Boyle, K. Rong, and D. C. Brown, “CAFixD: A Case-Based Reasoning Fixture Design Method. Framework and Indexing Mechanisms,” J. Comput. Inf. Sci. Eng., Vol.6, No.1, pp. 40-48, 2006. https://doi.org/10.1115/1.2161229
  12. [12] M. Bhuvanesh Kumar and P. Sathiya, “Methods and materials for additive manufacturing: A critical review on advancements and challenges,” Thin-Walled Struct., Vol.159, Article No.107228, 2021. https://doi.org/10.1016/j.tws.2020.107228
  13. [13] Y. Zhang, S. Yang, and Y. F. Zhao, “Manufacturability analysis of metal laser-based powder bed fusion additive manufacturing—A survey,” Int. J. Adv. Manuf. Technol., Vol.110, pp. 57-78, 2020. https://doi.org/10.1007/s00170-020-05825-6
  14. [14] A. Khorasani, I. Gibson, J. K. Veetil, and A. H. Ghasemi, “A review of technological improvements in laser-based powder bed fusion of metal printers,” Int. J. Adv. Manuf. Technol., Vol.108, pp. 191-209, 2020. https://doi.org/10.1007/s00170-020-05361-3
  15. [15] S. Chowdhury, N. Yadaiah, C. Prakash, S. Ramakrishna, S. Dixit, L. R. Gupta, and D. Buddhi, “Laser powder bed fusion: a state-of-the-art review of the technology, materials, properties & defects, and numerical modelling,” J. of Materials Research and Technology, Vol.20, pp. 2109-2172, 2022. https://doi.org/10.1016/j.jmrt.2022.07.121
  16. [16] C. Grandvallet, M. M. Mbow, T. Mainwaring, F. Pourroy, F. Vignat, and P. Marin, “Eight action rules for the orientation of additive manufacturing parts in powder bed fusion: An industry practice,” Int. J. Interact. Des. Manuf., Vol.14, pp. 1159-1170, 2020. https://doi.org/10.1007/s12008-020-00692-7
  17. [17] D. Deradjat and T. Minshall, “Implementation of rapid manufacturing for mass customisation,” J. Manuf. Technol. Manage., Vol.28, No.1, pp. 95-121, 2017. https://doi.org/10.1108/JMTM-01-2016-0007
  18. [18] J. Ferchow, D. Kälin, G. Englberger, M. Schlüssel, C. Klahn, and M. Meboldt, “Design and validation of integrated clamping interfaces for post-processing and robotic handling in additive manufacturing,” Int. J. Adv. Manuf. Technol., Vol.118, pp. 3761-3787, 2022. https://doi.org/10.1007/s00170-021-08065-4
  19. [19] N. Chen, P. Barnawal, and M. C. Frank, “Automated post machining process planning for a new hybrid manufacturing method of additive manufacturing and rapid machining,” Rapid Prototyping J., Vol.24, No.7, pp. 1077-1090, 2018. https://doi.org/10.1108/RPJ-04-2017-0057
  20. [20] M. Wollbrink, S. Maslo, D. Zimmer, K. Abbas, K. Arntz, and T. Bergs, “Clamping and substrate plate system for continuous additive build-up and post-processing of metal parts,” Procedia CIRP, Vol.93, pp. 108-113, 2020. https://doi.org/10.1016/j.procir.2020.04.015
  21. [21] E. C. De Meter and J. Santhosh Kumar, “Assessment of photo-activated adhesive workholding (PAW) technology for holding ‘hard-to-hold’ workpieces for machining,” J. Manuf. Syst., Vol.29, No.1, pp. 19-28, 2010. https://doi.org/10.1016/j.jmsy.2010.06.006
  22. [22] E. C. De Meter, “Light activated adhesive gripper (LAAG) workholding technology and process,” J. Manuf. Process., Vol.6, No.2, pp. 201-214, 2004. https://doi.org/10.1016/s1526-6125(04)70075-4
  23. [23] T. Yamada, K. Izui, S. Nishiwaki, and A. Takezawa, “A topology optimization method based on the level set method incorporating a fictitious interface energy,” Comput. Methods Appl. Mech. Eng., Vol.199, Nos.45-48, pp. 2876-2891, 2010. https://doi.org/10.1016/j.cma.2010.05.013
  24. [24] M. Otomori, T. Yamada, K. Izui, and S. Nishiwaki, “Matlab code for a level set-based topology optimization method using a reaction diffusion equation,” Struct. Multidiscip. Optim., Vol.51, pp. 1159-1172, 2015. https://doi.org/10.1007/s00158-014-1190-z
  25. [25] J. Bushra, H. D. Budinoff, P. Luna Falcon, and M. Latypov, “Enhancing design guidelines for metal powder bed fusion: Analyzing geometric features to improve part quality,” Vol.5: 28th Design for Manufacturing and the Life Cycle Conference (DFMLC), V005T05A011, 2023. https://doi.org/10.1115/detc2023-117019

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jan. 08, 2025