single-au.php

IJAT Vol.18 No.5 pp. 659-669
doi: 10.20965/ijat.2024.p0659
(2024)

Review:

Modeling Algorithms for Empowering Automated Manufacturing with Industrial X-Ray Computed Tomography

Yukie Nagai ORCID Icon

The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Corresponding author

Received:
February 29, 2024
Accepted:
July 22, 2024
Published:
September 5, 2024
Keywords:
X-ray computed tomography, sinogram, surface, modeling, industrial applications
Abstract

X-ray computed tomography (CT) is a technology that can non-destructively acquire volumetric images of objects. It is the only commercialized and practical measurement of the inner geometry of objects with micrometer-order accuracy. Microfocus X-ray CT scanners have been widely used in several manufacturing industries. The main applications range from typical observation and inspection to precision measurement and geometry acquisition. They are expanding beyond manufacturing (e.g., science, archeology, and food industries). This review describes the requirements for the use of X-ray CT scanners in the manufacturing industry and their modeling techniques. Recently, there have been growing expectations for the introduction of CT scanners for the high-accuracy acquisition of geometry and inline inspection for manufacturing automation. This requires quality and fast measurement data generation and scan data processing methods. Therefore, this paper presents attempts in the field of modeling for this purpose. The latest topics will also be covered, including large-scale CT and 4DCT.

Cite this article as:
Y. Nagai, “Modeling Algorithms for Empowering Automated Manufacturing with Industrial X-Ray Computed Tomography,” Int. J. Automation Technol., Vol.18 No.5, pp. 659-669, 2024.
Data files:
References
  1. [1] J. E. Spowart, “Automated serial sectioning for 3-D analysis of microstructures,” Scripta Materialia, Vol.55, No.1, pp. 5-10, 2006. https://doi.org/10.1016/j.scriptamat.2006.01.019
  2. [2] N. Nan and J. Wang, “FIB-SEM Three-Dimensional Tomography for Characterization of Carbon-Based Materials,” Advances in Materials Science and Engineering, Vol. 2019, No.1, Article No.8680715, 2019. https://doi.org/10.1155/2019/8680715
  3. [3] J. Jonkman, C. M. Brown, G. D. Wright, K. I. Anderson, and A. J. North, “Tutorial: guidance for quantitative confocal microscopy,” Nat. Protoc., Vol.15, No.5, pp. 1585-1611, 2020. https://doi.org/10.1038/s41596-020-0313-9
  4. [4] N. Kardjilov, I. Manke, A. Hilger, M. Strobl, and J. Banhart, “Neutron imaging in materials science,” Materials Today, Vol.14, No.6, pp. 248-256, 2011. https://doi.org/10.1016/S1369-7021(11)70139-0
  5. [5] I. Anderson, C. Andreani, J. Carpenter, G. Festa, G. Gorini, C.-K. Loong, and R. Senesi, “Research opportunities with compact accelerator-driven neutron sources,” Physics Reports, Vol.654, pp. 1-58, 2016. https://doi.org/10.1016/j.physrep.2016.07.007
  6. [6] L. De Chiffre, S. Carmignato, J.-P. Kruth, R. Schmitt, and A. Weckenmann, “Industrial applications of computed tomography,” CIRP Annals, Vol.63, No.2, pp. 655-677, 2014. https://doi.org/10.1016/j.cirp.2014.05.011
  7. [7] J. Kastner, C. Heinzl, B. Plank, D. Salaberger, C. Gusenbauer, and S. Senck, “New X-ray computed tomography methods for research and industry,” e-Journal of Nondestructive Testing, Vol.22, No.3, 2017. https://api.semanticscholar.org/CorpusID:31762025
  8. [8] H. Tsukaya and Y. Ohtake, “Cavity and entrance pore development in ant plant hypocotyls,” Frontiers in Plant Science, Vol.14, Article No.1234650, 2023. https://doi.org/10.3389/fpls.2023.1234650
  9. [9] H. Chen, X. Cao, X. Zhang, Z. Wang, B. Qiu, and K. Zheng, “Automatic segmentation framework of X-Ray tomography data for multi-phase rock using Swin Transformer approach,” Scientific Data, Vol.10, No.1, p. 812, 2023. https://doi.org/10.1038/s41597-023-02734-7
  10. [10] J. Haedelt, S. T. Beckett, and K. Niranjan, “Bubble-included chocolate: Relating structure with sensory response,” J. of Food Science, Vol.72, No.3, pp. E138-E142, 2007. https://doi.org/10.1111/j.1750-3841.2007.00313.x
  11. [11] V. Vancauwenberghe, M. Delele, W. Aregawi, P. Verboven, E. Bongaers, M. Noort, M. D. Schipper, E. V. D. Eijnden, K. V. Bommel, and B. Nicolai, “Characterization and model-based design validation of 3D printed cookies,” e-Journal of Nondestructive Testing, Vol.22, No.3, 2017. http://www.ndt.net/?id=20855
  12. [12] C. A. Brochu, “Osteology of Tyrannosaurus Rex: Insights from a Nearly Complete Skeleton and High-Resolution Computed Tomographic Analysis of the Skull,” J. of Vertebrate Paleontology, Vol.22, No.sup4, pp. 1-138, 2003. https://doi.org/10.1080/02724634.2003.10010947
  13. [13] N. Reims, A. Schulp, M. Böhnel, and P. Larson, “An XXL-CT-scan of an XXL tyrannosaurus rex skull,” e-Journal of Nondestructive Testing, Vol.21, No.7, 2016. https://www.ndt.net/?id=19249
  14. [14] Vesuvius Challenge, “The Vesuvius Challenge.” https://scrollprize.org/ [Accessed February 29, 2024].
  15. [15] M. Göggerle, “Opening Black Boxes: 3D-CT Digitalisation of Historical Cipher Machines,” Proc. of EVA London 2022 (EVA 2022), 2022. https://doi.org/10.14236/ewic/EVA2022.4
  16. [16] T. O. J. Fuchs, M. Boehnel, C. Kretzer, N. Reims, T. Sauer, G. Scholz, and R. Wagner, “Ten+ years of experience in digitization of cultural heritage by means of industrial X-ray Computed Tomography: A summary,” Research and Review J. of Nondestructive Testing, Vol.1, No.1, 2023. https://doi.org/10.58286/28090
  17. [17] H. Villarraga-Gómez, E. L. Herazo, and S. T. Smith, “X-ray computed tomography: from medical imaging to dimensional metrology,” Precision Engineering, Vol.60, pp. 544-569, 2019. https://doi.org/10.1016/j.precisioneng.2019.06.007
  18. [18] N. Ida and N. Meyendorf (Eds.), “Handbook of Advanced Nondestructive Evaluation,” Springer International Publishing, 2019. https://doi.org/10.1007/978-3-319-26553-7
  19. [19] J. Hsieh, “Computed Tomography: Principles, Design, Artifacts and Recent Advances,” SPIE Press, 2003.
  20. [20] R. Christoph and H. J. Neumann, “X-ray Tomography in Industrial Metrology, 2nd ed,” Verlag modern Industrie, 2012.
  21. [21] R. Mendricky and J. Sobotka, “Accuracy Comparison of the Optical 3D Scanner and CT Scanner,” Manufacturing Technology J., Vol.20, No.6, pp. 791-801, 2020. https://doi.org/10.21062/mft.2020.120
  22. [22] A. Amirkhanov, C. Heinzl, M. Reiter, and E. Gröller, “Visual Optimality and Stability Analysis of 3DCT Scan Positions,” IEEE Trans. on Visualization and Computer Graphics, Vol.16, pp. 1477-1486, 2011. https://doi.org/10.1109/TVCG.2010.214
  23. [23] K. Kobayashi, Y. Ohtake, Y. Nagai, and H. Suzuki, “Multi-pass CT Scanning with Orientation Selection and Volume Integration for Metal Artifact Reduction,” e-Journal of Nondestructive Testing, Vol.23, No.3, 2017. https://www.ndt.net/?id=22128
  24. [24] Y. Tan, Y. Ohtake, and H. Suzuki, “Scan angle selection and volume fusion for reducing metal artifacts by multiple X-ray CT scanning,” Precision Engineering, Vol.74, pp. 384-395, 2022. https://doi.org/10.1016/j.precisioneng.2021.07.020
  25. [25] C. Heinzl, J. Kastner, A. Amirkhamov, E. Gröller, and C. Gusenbauer, “Optimal specimen placement in cone beam X-ray computed tomography,” NDT and E Int., Vol.50, pp. 42-49, 2012. https://doi.org/10.1016/j.ndteint.2012.05.002
  26. [26] T. Ito, Y. Ohtake, and H. Suzuki, “Orientation Optimization and Making Jigs for X-ray CT scanning,” e-Journal of Nondestructive Testing, Vol.25, No.2, 2020. https://doi.org/10.58286/25108
  27. [27] J. Maier, S. Sawall, M. Knaup, and M. Kachelriess, “Deep Scatter Estimation (DSE): Accurate Real-Time Scatter Estimation for X-Ray CT Using a Deep Convolutional Neural Network,” J. of Nondestructive Evaluation, Vol.37, No.57, 2018. https://doi.org/10.1007/s10921-018-0507-z
  28. [28] M. Krenkel, M. Erler, S. Tzoumas, and C. Kuhn, “X-ray scatter removal for artifact free CT imaging,” e-Journal of Nondestructive Testing, Vol.25, No.2, 2020. https://doi.org/10.58286/25086
  29. [29] B. Kratz, F. Herold, and J. Robbins, “Study on the Influence of Scattered Radiation and the Usage of Scatter Reduction Methods for Computed Tomography,” e-Journal of Nondestructive Testing, Vol.22, No.3, 2017. https://www.ndt.net/?id=20823
  30. [30] M. Reiter, B. Harrer, C. Heinzl, D. Salaberger, C. Gusenbauer, C. Kuhn, and J. Kastner, “Simulation Aided Study for Optimising Industrial X-ray CT Scan Parameters for Non-Destructive Testing and Materials Characterisation,” Proc. of Int. Symp. on Digital Industrial Radiology and Computed Tomography, poster 5, 2011. https://www.ndt.net/?id=11153
  31. [31] A. Ziegler, T. Köhler, and R. Proksa, “Noise and resolution in images reconstructed with FBP and OSC algorithms for CT,” Medical Physics, Vol.34, No.2, pp. 585-598, 2007. https://doi.org/10.1118/1.2409481
  32. [32] L. Feldkamp, L. C. Davis, and J. Kress, “Practical cone-beam algorithm,” J. of the Optical Society of America A, Vol.1, No.6, pp. 612-619, 1984.
  33. [33] L. A. Shepp and B. F. Logan, “The Fourier reconstruction of a head section,” IEEE Trans. on Nuclear Science, Vol.21, No.3, pp. 21-43, 1974. https://doi.org/10.1109/TNS.1974.6499235
  34. [34] P. Grangeat, “Mathematical framework of cone beam 3D reconstruction via the first derivative of the radon transform,” Mathematical Methods in Tomography, pp. 66-97, 1991. https://doi.org/10.1007/BFb0084509
  35. [35] H. Shibuya and Y. Nagai, “Quality improvement of CT volumes by updating differentials of projection values,” e-Journal of Nondestructive Testing, Vol.29, No.3, 2024. https://doi.org/10.58286/29245
  36. [36] H. Villarraga-Gómez, A. Amirkhanov, C. Heinzl, and S. T. Smith, “Assessing the effect of sample orientation on dimensional X-ray computed tomography through experimental and simulated data,” Measurement, Vol. 178, Article No.109343, 2021. https://doi.org/10.1016/j.measurement.2021.109343
  37. [37] R. Yuki, Y. Ohtake, and H. Suzuki, “Acceleration of X-ray computed tomography scanning with high-quality reconstructed volume by deblurring transmission images using convolutional neural networks,” Precision Engineering, Vol.73, pp. 153-165, 2022. https://doi.org/10.1016/j.precisioneng.2021.08.023
  38. [38] H. Hattori, T. Yatagawa, Y. Ohtake, and H. Suzuki, “X-ray Scatter Correction by Deep Semi-supervised Learning of Simulated Projections with Beam Hole Array,” e-Journal of Nondestructive Testing, Vol.28, No.3, 2023. https://www.ndt.net/search/docs.php3?id=27734
  39. [39] S. Bellens, P. Guerrero, M. Janssens, P. Vandewalle, and W. Dewulf, “Machine learning based sinogram interpolation for X-ray computed tomography validated on experimental data,” Precision Engineering, Vol.88, pp. 449-463, 2024. https://doi.org/10.1016/j.precisioneng.2024.02.020
  40. [40] S. Carmignato, W. Dewulf, and R. Leach, “Industrial X-ray Computed Tomography,” Springer, 2017. https://doi.org/10.1007/978-3-319-59573-3
  41. [41] N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,” IEEE Trans. on Systems, Man, and Cybernetics, Vol.9, No.1, pp. 62-66, 1979. https://doi.org/10.1109/TSMC.1979.4310076
  42. [42] M. Sezgin and B. Sankur, “Survey over image thresholding techniques and quantitative performance evaluation,” J. of Electronic Imaging, Vol.13, No.1, pp. 146-165, 2004. https://doi.org/10.1117/1.1631315
  43. [43] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3D surface construction algorithm,” ACM SIGGRAPH Computer Graphics, Vol.21, No.4, pp. 163-169, 1987. https://doi.org/10.1145/37402.37422
  44. [44] S. F. F. Gibson, “Constrained elastic surface nets: Generating smooth surfaces from binary segmented data,” Medical Image Computing and Computer-Assisted Intervention (MICCAI’98), pp. 888-898, 1998. https://dl.acm.org/doi/10.5555/646921.709482
  45. [45] S. F. Frisken, R. N. Perry, A. P. Rockwood, and T. R. Jones, “Adaptively sampled distance fields: a general representation of shape for computer graphics,” Proc. of the 27th Annual Conf. on Computer Graphics and Interactive Techniques, pp. 249-254, 2000. https://doi.org/10.1145/344779.344899
  46. [46] S. F. Frisken, “SurfaceNets for Multi-Label Segmentations with Preservation of Sharp Boundaries,” J. of Computer Graphics Techniques (JCGT), Vol.11, No.1, pp. 34-54, 2022. http://jcgt.org/published/0011/01/03/
  47. [47] T. Ju, F. Losasso, S. Schaefer, and J. Warren, “Dual Contouring of Hermite Data,” ACM Trans. on Graphics, Vol.21, No.3, pp. 339-346, 2002. https://doi.org/10.1145/566654.566586
  48. [48] D. Yamanaka, Y. Ohtake, and H. Suzuki, “The Sinogram Polygonizer for Reconstructing 3D Shapes,” IEEE Trans. on Visualization and Computer Graphics, Vol.19, No.11, pp. 1911-1922, 2013. https://doi.org/10.1109/TVCG.2013.87
  49. [49] Y. Ohtake and H. Suzuki, “Edge detection based multi-material interface extraction on industrial CT volumes,” SCIENCE CHINA Information Sciences, Vol.56, No.9, pp. 1-9, 2013. https://doi.org/10.1007/s11432-013-4987-2
  50. [50] Hexagon AB, “Vgstudio max.” https://www.volumegraphics.com/en/products/vgsm.html [Accessed February 29, 2024]
  51. [51] Synopsys, Inc., “Simpleware.” https://www.synopsys.com/simpleware.html [Accessed February 29, 2024]
  52. [52] Thermo Fisher Scientific Inc., “Avizo.” https://www.thermofisher.com/jp/ja/home/electron-microscopy/products/software-em-3d-vis/avizo-software.html [Accessed February 29, 2024]
  53. [53] Y. Nagai, Y. Ohtake, and H. Suzuki, “Accurate surface extraction on CT volume using gradients obtained by differentiating FDK formula,” e-Journal of Nondestructive Testing Vol.24, No.3. https://doi.org/10.58286/23661
  54. [54] T. Ota, Y. Nagai, Y. Ohtake, A. Monkawa, Y. Miura, and T. Gessei, “High-accuracy Surface Extraction Using the High-order differentiation of X-ray CT Values,” e-Journal of Nondestructive Testing, Vol.27, No.3, 2022. https://doi.org/10.58286/26619
  55. [55] J. Canny, “A Computational Approach to Edge Detection,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.PAMI-8, No.6, pp. 679-698, 1986. https://doi.org/10.1109/TPAMI.1986.4767851
  56. [56] X. Yang, W. Sun, and C. L. Giusca, “Surface determination algorithm for accurate XCT bidirectional length measurements,” Precision Engineering, Vol.85, pp. 40-47, 2024. https://doi.org/10.1016/j.precisioneng.2023.09.003
  57. [57] Y. Nagai, Y. Ohtake, and H. Suzuki, “SegMo: CT volume segmentation using a multi-level Morse complex,” Computer-Aided Design, Vol.107, pp. 23-36, 2019. https://doi.org/10.1016/j.cad.2018.09.002
  58. [58] Y. Yamauchi, H. Suzuki, T. Michikawa, Y. Ohtake, K. Inagaki, H. Hishida, and T. Nakamura, “Extracting Woven Yarns of Ceramic Matrix Composite Parts With X-ray CT Scanning,” e-Journal of Nondestructive Testing, Vol.19, No.6, 2014. https://www.ndt.net/?id=15689
  59. [59] Y. Nagai, Y. Ohtake, H. Suzuki, H. Hishida, K. Inagaki, and T. Nakamura, “Direction estimation and visualization of yarns from CT volumes of SiC fabric,” Int. J. of Automation Technol., Vol.10, No.2, pp. 179-186, 2016. https://doi.org/10.20965/ijat.2016.p0179
  60. [60] H. Villarraga Gómez, C. Peitsch, A. Ramsey, and S. Smith, “The Role of Computed Tomography in Additive Manufacturing,” Proc. of 2018 ASPE and euspen Summer Topical Meeting - Advancing Precision in Additive Manufacturing, 2018.
  61. [61] M. Salamon, M. Boehnel, N. Reims, G. Ermann, V. Voland, M. Schmitt, N. Uhlmann, and R. Hanke, “Applications and methods with high energy CT systems,” e-Journal of Nondestructive Testing, Vol.18, No.12, 2013. https://www.ndt.net/?id=14955
  62. [62] M. Salamon, N. Reims, M. Böhnel, K. Zerbe, M. Schmitt, N. Uhlmann, and R. Hanke, “XXL-CT capabilities for the inspection of modern Electric Vehicles,” Proc. of Int. Symp. on Digital Industrial Radiology and Computed Tomography, 2019. https://www.ndt.net/?id=24754
  63. [63] G. A. Ciliberti, P. Janello, P. Jahnke, and K. Keuthage, “Potentials of full-vehicle CT scans within the automotive industry,” e-Journal of Nondestructive Testing, Vol.21, No.7, 2016. https://www.ndt.net/?id=19225
  64. [64] M. Salamon and Y. Nagai, “Gravure and interview,” J. of the Japan Society of Precision Engineering, Vol.86, No.5, pp. 295-301, 2020. https://doi.org/10.2493/jjspe.86.295
  65. [65] A. M. Stock, T. Lang, and T. Sauer, “The SCR File Format,” Fraunhofer, 2023. https://doi.org/10.24406/publica-1214
  66. [66] A. Weiss, S. Wittl, G. Herl, and S. Zabler, “Simulated and experimental evaluation of the accuracy of twin robotic CT systems,” e-Journal of Nondestructive Testing, Vol.28, No.3, 2023. https://doi.org/10.58286/27753
  67. [67] M. Krumm, C. Sauerwein, V. Hämmerle, S. Heile, T. Schön, A. Jung, and M. Sindel, “Rapid robotic X-ray computed tomography of large assemblies in automotive production,” e-Journal of Nondestructive Testing, Vol.23, No.2, 2018. https://www.ndt.net/?id=21920
  68. [68] J. Uher and J. Boháčová, “RadalyX–Robotic X-ray scanner: applications in aerospace and material industry,” e-Journal of Nondestructive Testing, Vol.29, No.3, 2024. https://doi.org/10.58286/29273
  69. [69] H. Villarraga-Gómez, M. Norouzi Rad, M. Andrew, A. Andreyev, R. Sanapala, L. Omlor, and C. Graf vom Hagen, “Improving throughput and image quality of high-resolution 3D X-ray microscopes using deep learning reconstruction techniques,” e-Journal of Nondestructive Testing, Vol.27, No.3, 2022. https://doi.org/10.58286/26644
  70. [70] H. Villarraga-Gómez and S. T. Smith, “Effect of the number of projections on dimensional measurements with X-ray computed tomography,” Precision Engineering, Vol.66, pp. 445-456, 2020. https://doi.org/10.1016/j.precisioneng.2020.08.006
  71. [71] L. Kramer, K. Bliedtner, L. de Graaf, and F. Herold, “4D Computed Tomography for the Analysis of Dynamic Properties of Metallic Additive Manufactured Components,” e-Journal of Nondestructive Testing, Vol.29, No.3, 2024. https://doi.org/10.58286/29272
  72. [72] T. Komiya, Y. Nagai, Y. Ohtake, A. Monkawa, Y. Miura, and T. Gessei, “Projection Image Interpolation for 4DCT Data Using Optical Flow,” e-Journal of Nondestructive Testing, Vol.27, No.3, 2022. https://doi.org/10.58286/26606
  73. [73] H. Kaneda, Y. Ohtake, T. Yatagawa, H. Suzuki, Y. Nagai, A. Monkawa, Y. Miura, and T. Gessei, “4D-CT Reconstruction from Sparse View of Deforming Objects via Initial Shape Morphing,” Proc. of the 20th World Conf. on Non-Destructive Testing (WCNDT), 2024 (in press).
  74. [74] J. Gutekunst, R. Fettig, E. Hamann, M. Zuber, and J. Schulz, “Implementing Dark-Field Contrast Imaging in Computer Tomography with Simple Setup Talbot-Lau-Interferometer,” e-Journal of Nondestructive Testing, Vol.29, No.3, 2024. https://doi.org/10.58286/29256
  75. [75] C. Hannesschläger, V. Revol, B. Plank, D. Salaberger, and J. Kastner, “Fibre structure characterisation of injection moulded short fibre-reinforced polymers by X-ray scatter dark field tomography,” Case Studies in Nondestructive Testing and Evaluation, Vol.3, pp. 34-41, 2015. https://doi.org/10.1016/j.csndt.2015.04.001
  76. [76] J. Glinz, M. Thor, J. Schulz, S. Zabler, J. Kastner, and S. Senck, “Non-destructive characterization of out-of-plane fiber waviness in carbon fiber reinforced polymers by X-ray dark-field radiography,” e-Journal of Nondestructive Testing, Vol.27, No.3, 2022. https://doi.org/10.58286/26599
  77. [77] P. Gänz, S. Kieß, and S. Simon, “Single Shot X-ray Speckle Tracking Phase Contrast Imaging with a Low Brilliance Lab Source,” e-Journal of Nondestructive Testing, Vol.28, No.3, 2023. https://doi.org/10.58286/27709
  78. [78] P. M. Shikhaliev, “Beam hardening artefacts in computed tomography with photon counting, charge integrating and energy weighting detectors: a simulation study,” Physics in Medicine and Biology, Vol.50, No.24, pp. 5813-5827, 2005. https://doi.org/10.1088/0031-9155/50/24/004
  79. [79] A. Peterzol, O. Joulie, S. Marol, P. Brun, M. Urech, N. Weber, and C. Ullberg, “Digital radiography by counting photons: innovative solution for testing very thick parts,” Research and Review J. of Nondestructive Testing, Vol.1, No.1, 2023. https://doi.org/10.58286/28210
  80. [80] J. Martinez-Garcia, D. Gwerder, D. Schiffmann, T. Thuering, D. Š. Jung, S. Gkoumas, and P. Schuetz, “Energy-selective X-ray CT imaging with an EIGER2 hybrid photon counting detector in a Diondo d2 XCT system,” e-Journal of Nondestructive Testing, Vol.29, No.3, 2024. https://doi.org/10.58286/29275
  81. [81] D. Vavrik, I. Kumpova, J. Lauterkranc, and M. Vopalensky, “Analysis of Baroque Sculpture Based on X-Ray Fluorescence Imaging and X-ray Computed Tomography Data Fusion,” e-Journal of Nondestructive Testing, Vol.22, No.3, 2017.
  82. [82] W. Wu, D. Qi, W. Hu, L. Xi, L. Sun, B. Liao, F. Berto, G. Qian, and D. Xiao, “Synchrotron X-ray micro-computed tomography imaging of 3D re-entrant micro lattice during in situ micro compression experimental process,” Materials & Design, Vol.192, Article No.108743, 2020. https://doi.org/10.1016/j.matdes.2020.108743
  83. [83] W. Yashiro, W. Voegeli, and H. Kudo, “Exploring Frontiers of 4D X-ray Tomography,” Applied Sciences,” Vol.11, No.19, Article No.8868, 2021. https://doi.org/10.3390/app11198868
  84. [84] T. Lang, N. Saeidnezhad, K. Dremel, D. Weller, M. Diez, A. M. Stock, T. Sauer, F. Cianciosi, C. Jarnias, P. Tafforeau, and S. Zabler, “Multiscale Phase-Contrast Tomography at BM18,” e-Journal of Nondestructive Testing, Vol.28, No.3, 2023. https://doi.org/doi.org/10.58286/27746

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Sep. 09, 2024