Research Paper:
Topological Delaunay Graph for Efficient 3D Binary Image Analysis
Shin Yoshizawa , Takashi Michikawa , and Hideo Yokota
Image Processing Research Team, RIKEN Center for Advanced Photonics, RIKEN
2-1 Hirosawa, Wako, Saitama 351-0198, Japan
Corresponding author
Topological data analysis (TDA) based on persistent homology (PH) has become increasingly popular in automation technology. Recent advances in imaging and simulation techniques demand TDA for 3D binary images, but it is not a trivial task in practice, especially in terms of the computational speed of PH. This paper proposes a simple and efficient computational framework to extract topological features of 3D binary images by estimating persistence diagrams (PDs) for 3D binary images. The proposed framework is based on representing a 3D binary image by constructing a topological Delaunay graph with distance edge weights as a Rips complex, and it utilizes PD computation libraries for the constructed graph. The vertices, edges, and edge weights of the proposed graph correspond to connected-components (CCs) in the 3D binary image, Delaunay edges of the generalized Voronoi diagram for the CC boundaries, and minimum distances between adjacent CCs, respectively. Thus, the number of elements required to compute PD is significantly reduced for large objects in 3D binary images compared with conventional representations such as cubical complexes, which results in efficient topological feature estimations.
- [1] H. Edelsbrunner, D. Letscher, and A. Zomorodian, “Topological persistence and simplification,” Discrete Comput. Geom., Vol.28, No.4, pp. 511-533, 2002. https://doi.org/10.1007/s00454-002-2885-2
- [2] J. R. Munkres, “Elements of Algebraic Topology,” CRC Press, 1984.
- [3] X. Hu, F. Li, D. Samaras, and C. Chen, “Topology-preserving deep image segmentation,” Proc. Int. Conf. Neural Inf. Process. Syst. (NIPS), pp. 5657-5668, 2019.
- [4] T. K. Dey, T. Hou, and S. Mandal, “Persistent 1-cycles: Definition, computation, and its application,” Proc. Int. Workshop Comput. Topol. Image Context (CTIC), pp. 123-136, 2019. https://doi.org/10.1007/978-3-030-10828-1_10
- [5] C.-C. Wong and C.-M. Vong, “Persistent homology based graph convolution network for fine-grained 3D shape segmentation,” 2021 IEEE/CVF Int. Conf. Comput. Vis. (ICCV), pp. 7078-7087, 2021. https://doi.org/10.1109/ICCV48922.2021.00701
- [6] W. A. Sethares and R. Budney, “Topology of musical data,” J. Math. Music, Vol.8, No.1, pp. 73-92, 2014. https://doi.org/10.1080/17459737.2013.850597
- [7] M. G. Bergomi and A. Baratè, “Homological persistence in time series: An application to music classification,” J. Math. Music, Vol.14, No.2, pp. 204-221, 2020. https://doi.org/10.1080/17459737.2020.1786745
- [8] Y. Hiraoka et al., “Hierarchical structures of amorphous solids characterized by persistent homology,” Proc. Natl. Acad. Sci., Vol.113, No.26, pp. 7035-7040, 2016. https://doi.org/10.1073/pnas.1520877113
- [9] T. Ichinomiya, I. Obayashi, and Y. Hiraoka, “Protein-folding analysis using features obtained by persistent homology,” Biophys. J., Vol.118, No.12, pp. 2926-2937, 2020. https://doi.org/10.1016/j.bpj.2020.04.032
- [10] C. S. Pun, S. X. Lee, and K. Xia, “Persistent-homology-based machine learning: A survey and a comparative study,” Artif. Intell. Rev., Vol.55, No.7, pp. 5169-5213, 2022. https://doi.org/10.1007/s10462-022-10146-z
- [11] S. Bhattacharya, R. Ghrist, and V. Kumar, “Persistent homology for path planning in uncertain environments,” IEEE Trans. Robot., Vol.31, No.3, pp. 578-590, 2015. https://doi.org/10.1109/TRO.2015.2412051
- [12] W. X. Merkt, V. Ivan, T. Dinev, I. Havoutis, and S. Vijayakumar, “Memory clustering using persistent homology for multimodality- and discontinuity-sensitive learning of optimal control warm-starts,” IEEE Trans. Robot., Vol.37, No.5, pp. 1649-1660, 2021. https://doi.org/10.1109/TRO.2021.3069132
- [13] M. Saroya, G. Best, and G. A. Hollinger, “Roadmap learning for probabilistic occupancy maps with topology-informed growing neural gas,” IEEE Robot. Autom. Lett., Vol.6, No.3, pp. 4805-4812, 2021. https://doi.org/10.1109/LRA.2021.3068886
- [14] F. T. Pokorny, K. Goldberg, and D. Kragic, “Topological trajectory clustering with relative persistent homology,” IEEE Int. Conf. Robot. Autom. (ICRA), pp. 16-23, 2016. https://doi.org/10.1109/ICRA.2016.7487092
- [15] J. Mahler, F. T. Pokorny, S. Niyaz, and K. Goldberg, “Synthesis of energy-bounded planar caging grasps using persistent homology,” IEEE Trans. Autom. Sci. Eng., Vol.15, No.3, pp. 908-918, 2018. https://doi.org/10.1109/TASE.2018.2831724
- [16] E. U. Samani, X. Yang, and A. G. Banerjee, “Visual object recognition in indoor environments using topologically persistent features,” IEEE Robot. Autom. Lett., Vol.6, No.4, pp. 7509-7516, 2021. https://doi.org/10.1109/LRA.2021.3099460
- [17] Y. Zhang et al., “MFCIS: An automatic leaf-based identification pipeline for plant cultivars using deep learning and persistent homology,” Hortic. Res., Vol.8, Article No.172, 2021. https://doi.org/10.1038/s41438-021-00608-w
- [18] O. Vipond et al., “Multiparameter persistent homology landscapes identify immune cell spatial patterns in tumors,” Proc. Natl. Acad. Sci., Vol.118, No.41, Article No.e2102166118, 2021. https://doi.org/10.1073/pnas.2102166118
- [19] E. R. Vieira et al., “Persistent homology for effective non-prehensile manipulation,” IEEE Int. Conf. Robot. Autom. (ICRA), pp. 1918-1924, 2022. https://doi.org/10.1109/ICRA46639.2022.9811848
- [20] S. Paul et al., “Efficient planning of multi-robot collective transport using graph reinforcement learning with higher order topological abstraction,” IEEE Int. Conf. Robot. Autom. (ICRA), pp. 5779-5785, 2023. https://doi.org/10.1109/ICRA48891.2023.10161517
- [21] H. Edelsbrunner and J. L. Harer, “Computational Topology: An Introduction,” American Mathematical Society, 2010.
- [22] R. Ghrist, “Barcodes: The persistent topology of data,” Bull. Amer. Math. Soc., Vol.45, No.1, pp. 61-75, 2008.
- [23] D. Halperin, M. Kerber, and D. Shaharabani, “The offset filtration of convex objects,” Proc. Eur. Symp. Algorithms (ESA), pp. 705-716, 2015. https://doi.org/10.1007/978-3-662-48350-3_59
- [24] V. Robins, P. J. Wood, and A. P. Sheppard, “Theory and algorithms for constructing discrete Morse complexes from grayscale digital images,” IEEE Trans. Pattern Anal. Mach. Intell., Vol.33, No.8, pp. 1646-1658, 2011. Diamorse C++ source code: https://github.com/AppliedMathematicsANU/diamorse [Accessed August 9, 2024]
- [25] H. Wagner, C. Chen, and E. Vuçini, “Efficient computation of persistent homology for cubical data,” R. Peikert, H. Hauser, H. Carr, and R. Fuchs (Eds.), “Topological Methods in Data Analysis and Visualization II,” pp. 91-106, Springer, 2012. https://doi.org/10.1007/978-3-642-23175-9_7
- [26] D. Günther, J. Reininghaus, H. Wagner, and I. Hotz, “Efficient computation of 3D Morse–Smale complexes and persistent homology using discrete Morse theory,” Vis. Comput., Vol.28, No.10, pp. 959-969, 2012. https://doi.org/10.1007/s00371-012-0726-8
- [27] S. Kaji, T. Sudo, and K. Ahara, “Cubical Ripser: Software for computing persistent homology of image and volume data,” arXiv:2005.12692, 2020. C++ source code: https://github.com/shizuo-kaji/CubicalRipser_3dim [Accessed August 9, 2024]
- [28] J. Vidal, P. Guillou, and J. Tierny, “A progressive approach to scalar field topology,” IEEE Trans. Vis. Comput. Graph., Vol.27, No.6, pp. 2833-2850, 2021. https://doi.org/10.1109/TVCG.2021.3060500
- [29] J. Vidal and J. Tierny, “Fast approximation of persistence diagrams with guarantees,” IEEE Symp. Large Data Anal. Vis. (LDAV), 2021. https://doi.org/10.1109/LDAV53230.2021.00008
- [30] P. Guillou, J. Vidal, and J. Tierny, “Discrete Morse sandwich: Fast computation of persistence diagrams for scalar data – An algorithm and a benchmark,” IEEE Trans. Vis. Comput. Graph., Vol.30, No.4, pp. 1897-1915, 2024. https://doi.org/10.1109/TVCG.2023.3238008
- [31] H. Wagner, “Slice, simplify and stitch: Topology-preserving simplification scheme for massive voxel data,” Proc. Int. Symp. Comput. Geom. (SoCG), Article No.60, 2023. Cubicle C++ source code: https://bitbucket.org/hubwag/cubicle/src/master [Accessed August 9, 2024]
- [32] C. Maria, J.-D. Boissonnat, M. Glisse, and M. Yvinec, “The Gudhi library: Simplicial complexes and persistent homology,” Proc. Int. Conf. Math. Softw. (ICMS), pp. 167-174, 2014. GUDHI C++ source code: https://gudhi.inria.fr [Accessed August 9, 2024]
- [33] K. Mischaikow and V. Nanda, “Morse theory for filtrations and efficient computation of persistent homology,” Discrete Comput. Geom., Vol.50, No.2, pp. 330-353, 2013. Perseus C++ source code: http://people.maths.ox.ac.uk/nanda/perseus [Accessed August 9, 2024]
- [34] U. Bauer, M. Kerber, and J. Reininghaus, “Distributed computation of persistent homology,” Proc. Workshop Algorithm Eng. Exp. (ALENEX), pp. 31-38, 2014. DIPHA C++ source code: https://github.com/DIPHA/dipha [Accessed August 9, 2024]
- [35] J. Tierny, G. Favelier, J. Levine, C. Gueunet, and M. Michaux, “The Topology ToolKit,” IEEE Trans. Vis. Comput. Graph., Vol.24, No.1, pp. 832-842, 2018. C++ source code: https://topology-tool-kit.github.io [Accessed August 9, 2024]
- [36] V. A. Kovalevsky, “Finite topology as applied to image analysis,” Comput. Vis. Graph. Image Process., Vol.46, No.2, pp. 141-161, 1989. https://doi.org/10.1016/0734-189X(89)90165-5
- [37] J. Zheng and T.-S. Tan, “Addendum: After a decade,” 2019. Parallel Banding Algorithm Plus C++ source code: https://github.com/orzzzjq/Parallel-Banding-Algorithm-plus [Accessed August 9, 2024]
- [38] U. Bauer, “Ripser: Efficient computation of Vietoris–Rips persistence barcodes,” J. Appl. Comput. Topol., Vol.5, No.3, pp. 391-423, 2021. C++ source code: https://github.com/Ripser/ripser [Accessed August 9, 2024]
- [39] T.-T. Cao, K. Tang, A. Mohamed, and T.-S. Tan, “Parallel banding algorithm to compute exact distance transform with the GPU,” Proc. ACM SIGGRAPH Symp. Interact. 3D Graph. Games (I3D), pp. 83-90, 2010. https://doi.org/10.1145/1730804.1730818
- [40] U. Bauer et al., “Keeping it sparse: Computing persistent homology revisited,” arXiv:2211.09075, 2022. https://doi.org/10.48550/arXiv.2211.09075
- [41] M. J. Golin and H.-S. Na, “On the average complexity of 3D-Voronoi diagrams of random points on convex polytopes,” Comput. Geom., Vol.25, No.3, pp. 197-231, 2003. https://doi.org/10.1016/S0925-7721(02)00123-2
- [42] J.-D. Boissonnat, F. Chazal, and M. Yvinec, “Geometric and Topological Inference,” Cambridge University Press, 2018. https://doi.org/10.1017/9781108297806
- [43] L. Vietoris, “Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen,” Math. Ann., Vol.97, pp. 454-472, 1927 (in German). https://doi.org/10.1007/BF01447877
- [44] J.-C. Hausmann, “On the Vietoris-Rips complexes and a cohomology theory for metric spaces,” Proc. Conf. Honor William Browder (Prospects Topol., Vol.138), pp. 175-188, 1996. https://doi.org/10.1515/9781400882588-013
- [45] N. O. Malott, S. Chen, and P. A. Wilsey, “A survey on the high-performance computation of persistent homology,” IEEE Trans. Knowl. Data Eng., Vol.35, No.5, pp. 4466-4484, 2023. https://doi.org/10.1109/TKDE.2022.3147070
- [46] H. Edelsbrunner and J. Harer, “Persistent homology—A survey,” J. E. Goodman, J. Pach, and R. Pollack (Eds.), “Surveys on Discrete and Computational Geometry: Twenty Years Later,” pp. 257-282, American Mathematical Society, 2008.
- [47] N. J. Cavanna, M. Jahanseir, and D. R. Sheehy, “A geometric perspective on sparse filtrations,” arXiv:1506.03797, 2015. https://doi.org/10.48550/arXiv.1506.03797
- [48] A. Zomorodian and G. Carlsson, “Computing persistent homology,” Discrete Comput. Geom., Vol.33, No.2, pp. 249-274, 2005. https://doi.org/10.1007/s00454-004-1146-y
- [49] H. Edelsbrunner, “Alpha shapes – A survey,” Tessellations in the Sciences: Virtues, Techniques and Applications of Geometric Tilings, 2011.
- [50] F. Chazal, D. Cohen-Steiner, M. Glisse, L. J. Guibas, and S. Y. Oudot, “Proximity of persistence modules and their diagrams,” Proc. Symp. Comput. Geom. (SoCG), pp. 237-246, 2009. https://doi.org/10.1145/1542362.1542407
- [51] N. Otter, M. A. Porter, U. Tillmann, P. Grindrod, and H. A. Harrington, “A roadmap for the computation of persistent homology,” EPJ Data Sci., Vol.6, No.1, Article No.17, 2017. https://doi.org/10.1140/epjds/s13688-017-0109-5
- [52] A. Zomorodian, “Fast construction of the Vietoris-Rips complex,” Comput. Graph., Vol.34, No.3, pp. 263-271, 2010. https://doi.org/10.1016/j.cag.2010.03.007
- [53] V. de Silva, D. Morozov, and M. Vejdemo-Johansson, “Persistent cohomology and circular coordinates,” Discrete Comput. Geom., Vol.45, No.4, pp. 737-759, 2011. https://doi.org/10.1007/s00454-011-9344-x
- [54] C. Chen and M. Kerber, “Persistent homology computation with a twist,” Proc. Eur, Workshop Comput. Geom. (EuroCG), 2011.
- [55] J.-D. Boissonnat, T. K. Dey, and C. Maria, “The compressed annotation matrix: An efficient data structure for computing persistent cohomology,” Proc. Eur. Symp. Algorithms (ESA), pp. 695-706, 2013. https://doi.org/10.1007/978-3-642-40450-4_59
- [56] T. K. Dey, F. Fan, and Y. Wang, “Computing topological persistence for simplicial maps,” Proc. Symp. Comput. Geom. (SoCG), pp. 345-354, 2014. https://doi.org/10.1145/2582112.2582165
- [57] J.-D. Boissonnat and C. Maria, “The simplex tree: An efficient data structure for general simplicial complexes,” Algorithmica, Vol.70, No.3, pp. 406-427, 2014. https://doi.org/10.1007/s00453-014-9887-3
- [58] G. Henselman and R. Ghrist, “Matroid filtrations and computational persistent homology,” arXiv:1606.00199, 2017. https://doi.org/10.48550/arXiv.1606.00199
- [59] D. Morozov, “Dionysus 2,” 2015. C++ with Python bindings: https://github.com/mrzv/dionysus [Accessed August 9, 2024]
- [60] H. Adams, A. Tausz, and M. Vejdemo-Johansson, “javaPlex: A research software package for persistent (co)homology,” Proc. Int. Conf. Math. Softw. (ICMS), pp. 129-136, 2014. https://doi.org/10.1007/978-3-662-44199-2_23
- [61] R. Mendoza-Smith and J. Tanner, “Parallel multi-scale reduction of persistent homology filtrations,” arXiv:1708.04710, 2017. https://doi.org/10.48550/arXiv.1708.04710
- [62] U. Bauer, M. Kerber, J. Reininghaus, and H. Wagner, “Phat – Persistent homology algorithms toolbox,” J. Symb. Comput., Vol.78, pp. 76-90, 2017. https://doi.org/10.1016/j.jsc.2016.03.008
- [63] B. T. Fasy et al., “TDA: Statistical tools for topological data analysis,” 2023. https://CRAN.R-project.org/package=TDA [Accessed August 9, 2024]
- [64] I. Obayashi, T. Nakamura, and Y. Hiraoka, “Persistent homology analysis for materials research and persistent homology software: HomCloud,” J. Phys. Soc. Jpn., Vol.91, No.9, Article No.091013, 2022. https://doi.org/10.7566/JPSJ.91.091013
- [65] P. Bendich, H. Edelsbrunner, and M. Kerber, “Computing robustness and persistence for images,” IEEE Trans. Vis. Comput. Graph., Vol.16, No.6, pp. 1251-1260, 2010. https://doi.org/10.1109/TVCG.2010.139
- [66] R. Forman, “Morse theory for cell complexes,” Adv. Math., Vol.134, No.1, pp. 90-145, 1998. https://doi.org/10.1006/aima.1997.1650
- [67] O. Delgado-Friedrichs, V. Robins, and A. Sheppard, “Skeletonization and partitioning of digital images using discrete Morse theory,” IEEE Trans. Pattern Anal. Mach. Intell., Vol.37, No.3, pp. 654-666, 2015. https://doi.org/10.1109/TPAMI.2014.2346172
- [68] R. Dementiev, L. Kettner, and P. Sanders, “STXXL: Standard template library for XXL data sets,” Proc. 13th Annu. Eur. Symp. Algorithms (ESA 2005), pp. 640-651, 2005. https://doi.org/10.1007/11561071_57
- [69] L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient algorithm based on immersion simulations,” IEEE Trans. Pattern Anal. Mach. Intell., Vol.13, No.6, pp. 583-598, 1991. https://doi.org/10.1109/34.87344
- [70] H. Edelsbrunner, “Algorithms in combinatorial geometry,” Springer, 1987. https://doi.org/10.1007/978-3-642-61568-9
- [71] T. Hayashi, K. Nakano, and S. Olariu, “Optimal parallel algorithms for finding proximate points, with applications,” IEEE Trans. Parallel Distrib. Syst., Vol.9, No.12, pp. 1153-1166, 1998. https://doi.org/10.1109/71.737693
- [72] Y.-H. Lee, S.-J. Horng, and J. Seltzer, “Parallel computation of the Euclidean distance transform on a three-dimensional image array,” IEEE Trans. Parallel Distrib. Syst., Vol.14, No.3, pp. 203-212, 2003. https://doi.org/10.1109/TPDS.2003.1189579
- [73] C. R. Maurer, R. Qi, and V. Raghavan, “A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions,” IEEE Trans. Pattern Anal. Mach. Intell., Vol.25, No.2, pp. 265-270, 2003. https://doi.org/10.1109/TPAMI.2003.1177156
- [74] M. N. Kolountzakis and K. N. Kutulakos, “Fast computation of the Euclidean distance maps for binary images,” Inf. Process. Lett., Vol.43, No.4, pp. 181-184, 1992. https://doi.org/10.1016/0020-0190(92)90197-4
- [75] K. E. Hoff, III, J. Keyser, M. Lin, D. Manocha, and T. Culver, “Fast computation of generalized Voronoi diagrams using graphics hardware,” Proc. ACM SIGGRAPH, pp. 277-286, 1999. https://doi.org/10.1145/311535.311567
- [76] G. Rong and T.-S. Tan, “Jump flooding in GPU with applications to Voronoi diagram and distance transform,” Proc. Symp. Interact. 3D Graph. Games (I3D), pp. 109-116, 2006. https://doi.org/10.1145/1111411.1111431
- [77] F. Chazal and S. Y. Oudot, “Towards persistence-based reconstruction in Euclidean spaces,” Proc. Symp. Comput. Geom. (SoCG), pp. 232-241, 2008. https://doi.org/10.1145/1377676.1377719
- [78] S. Huber, “The topology of skeletons and offsets,” Proc. Eur. Workshop Comput. Geom. (EuroCG), 2018.
- [79] K. R. Gabriel and R. R. Sokal, “A new statistical approach to geographic variation analysis,” Syst. Biol., Vol.18, No.3, pp. 259-278, 1969. https://doi.org/10.2307/2412323
- [80] S. Dantchev and I. Ivrissimtzis, “Efficient construction of the Čech complex,” Comput. Graph., Vol.36, No.6, pp. 708-713, 2012. https://doi.org/10.1016/j.cag.2012.02.016
- [81] J. F. Espinoza, R. Hernández-Amador, H. A. Hernández-Hernández, and B. Ramonetti-Valencia, “A numerical approach for the filtered generalized Čech complex,” Algorithms, Vol.13, No.1, Article No.11, 2020. https://doi.org/10.3390/a13010011
- [82] J. Chu, M. Vejdemo-Johansson, and P. Ji, “An improved algorithm for generalized Čech complex construction,” arXiv:2209.15574, 2022. https://doi.org/10.48550/arXiv.2209.15574
- [83] M. Buchet, F. Chazal, S. Y. Oudot, and D. R. Sheehy, “Efficient and robust persistent homology for measures,” Comput. Geom., Vol.58, pp. 70-96, 2016. https://doi.org/10.1016/j.comgeo.2016.07.001
- [84] D. R. Sheehy, “Linear-size approximations to the Vietoris–Rips filtration,” Discrete Comput. Geom., Vol.49, No.4, pp. 778-796, 2013. https://doi.org/10.1007/s00454-013-9513-1
- [85] M. Glisse and S. Pritam, “Swap, shift and trim to edge collapse a filtration,” Proc. Symp. Comput. Geom. (SoCG), Article No.44, 2022. https://doi.org/10.4230/LIPIcs.SoCG.2022.44
- [86] U. Bauer, “Ripser: Tight representative cycles,” 2019. C++ source code: https://github.com/Ripser/ripser/tree/tight-representative-cycles [Accessed August 9, 2024]
- [87] T. K. Dey, J. Sun, and Y. Wang, “Approximating loops in a shortest homology basis from point data,” Proc. Symp. Comput. Geom. (SoCG), pp. 166-175, 2010. https://doi.org/10.1145/1810959.1810989
- [88] T. K. Dey, A. N. Hirani, and B. Krishnamoorthy, “Optimal homologous cycles, total unimodularity, and linear programming,” SIAM J. Comput., Vol.40, No.4, pp. 1026-1044, 2011. https://doi.org/10.1137/100800245
- [89] I. Obayashi, “Volume-optimal cycle: Tightest representative cycle of a generator in persistent homology,” SIAM J. Appl. Algebra Geom., Vol.2, No.4, pp. 508-534, 2018. https://doi.org/10.1137/17M1159439
- [90] V. de Silva, D. Morozov, and M. Vejdemo-Johansson, “Dualities in persistent (co)homology,” Inverse Probl., Vol.27, No.12, Article No.124003, 2011. https://doi.org/10.1088/0266-5611/27/12/124003
- [91] The Computational Geometry Algorithms Library (CGAL), “CGAL 5.6 – Manual,” 2023. https://doc.cgal.org/5.6 [Accessed August 9, 2024]
- [92] M. J. Atallah and M. Blanton (Eds.), “Algorithms and Theory of Computation Handbook, Vol.2 – Special Topics and Techniques,” 2nd Edition, Chapman & Hall, 2009.
- [93] M. Kerber, D. Morozov, and A. Nigmetov, “Geometry helps to compare persistence diagrams,” J. Exp. Algorithmics, Vol.22, Article No.1.4, 2017. C++ source code: https://bitbucket.org/grey_narn/hera/src/master [Accessed August 9, 2024]
- [94] D. Attali, A. Lieutier, and D. Salinas, “Vietoris–Rips complexes also provide topologically correct reconstructions of sampled shapes,” Comput. Geom., Vol.46, No.4, pp. 448-465, 2013. https://doi.org/10.1016/j.comgeo.2012.02.009
- [95] N. O. Malott and P. A. Wilsey, “Fast computation of persistent homology with data reduction and data partitioning,” 2019 IEEE Int. Conf. Big Data, pp. 880-889, 2019. https://doi.org/10.1109/BigData47090.2019.9006572
- [96] A. Taghribi et al., “ASAP – A sub-sampling approach for preserving topological structures modeled with geodesic topographic mapping,” Neurocomputing, Vol.470, pp. 376-388, 2022. https://doi.org/10.1016/j.neucom.2021.05.108
- [97] K. Mamou and F. Ghorbel, “A simple and efficient approach for 3D mesh approximate convex decomposition,” IEEE Int. Conf. Image Process. (ICIP), pp. 3501-3504, 2009. https://doi.org/10.1109/ICIP.2009.5414068
- [98] X. Wei, M. Liu, Z. Ling, and H. Su, “Approximate convex decomposition for 3D meshes with collision-aware concavity and tree search,” ACM Trans. Graph., Vol.41, No.4, Article No.42, 2022. https://doi.org/10.1145/3528223.3530103
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.