IJAT Vol.18 No.4 pp. 545-580
doi: 10.20965/ijat.2024.p0545


Advanced Sensing and Machine Learning Technologies for Intelligent Measurement in Smart and Precision Manufacturing

Ryo Sato*,† ORCID Icon, Kuangyi Li* ORCID Icon, Masaki Michihata** ORCID Icon, Satoru Takahashi** ORCID Icon, and Wei Gao* ORCID Icon

*Department of Finemechanics, Tohoku University
6-6-01 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan

Corresponding author

**Department of Precision Engineering, The University of Tokyo
Tokyo, Japan

January 16, 2024
April 12, 2024
July 5, 2024
intelligent measurement, sensing, machine learning, dimensional metrology, process monitoring

This paper provides an overview of state-of-the-art sensing and machine learning technologies for intelligent measurement in smart and precision manufacturing. Length, angle, and force are identified as the fundamental quantities for production quality management based on process monitoring as well as geometrical metrology in optical lithography and mechanical machining. Advancements in length-based measurement technologies such as laser interferometers and optical encoders, as well as advancements regarding depth and thickness measurements, are presented. Various types of optical microscopes, such as evanescent field microscopes, structured illumination microscopes, and confocal microscopes, are also described. For angle-based measurement technologies, in addition to the conventional continuous-wave laser autocollimators, the newly developed Fabry–Pérot angle sensor and nonlinear optics angle sensor using an ultrashort pulse laser are presented. Finally, on-machine and in-process force sensing and machining learning techniques for dimensional and machining process monitoring are reviewed.

Cite this article as:
R. Sato, K. Li, M. Michihata, S. Takahashi, and W. Gao, “Advanced Sensing and Machine Learning Technologies for Intelligent Measurement in Smart and Precision Manufacturing,” Int. J. Automation Technol., Vol.18 No.4, pp. 545-580, 2024.
Data files:
  1. [1] W. Gao, “Precision Nanometrology: Sensors and Measuring Systems for Nanomanufacturing,” Springer, 2010.
  2. [2] F. Z. Fang et al., “Nanomanufacturing—Perspective and applications,” CIRP Ann., Vol.66, No.2, pp. 683-705, 2017.
  3. [3] A. Archenti, W. Gao, A. Donmez, E. Savio, and N. Irino, “Integrated metrology for advanced manufacturing,” CIRP Ann., 2024.
  4. [4] W. Gao et al., “Measurement technologies for precision positioning,” CIRP Ann., Vol.64, No.2, pp. 773-796, 2015.
  5. [5] G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics, Vol.4, No.4, pp. 441-471, 2012.
  6. [6] S. Yang and G. Zhang, “A review of interferometry for geometric measurement,” Meas. Sci. Technol., Vol.29, No.10, Article No.102001, 2018. 10.1088/1361-6501/aad732
  7. [7] M. Conroy and J. Armstrong, “A comparison of surface metrology techniques,” J. Phys.: Conf. Ser., Vol.13, pp. 458-465, 2005.
  8. [8] G. Dai, K. Hahm, L. Sebastian, and M. Heidelmann, “Comparison of EUV photomask metrology between CD-AFM and TEM,” Nanomanuf. Metrol., Vol.5, No.2, pp. 91-100, 2022.
  9. [9] Zygo Corporation, “Verifire™ Laser Interferometer.” [Accessed November 6, 2023]
  10. [10] W. Gao, P. S. Huang, T. Yamada, and S. Kiyono, “A compact and sensitive two-dimensional angle probe for flatness measurement of large silicon wafers,” Precis. Eng., Vol.26, No.4, pp. 396-404, 2002.
  11. [11] W. Gao, “Surface Metrology for Micro- and Nanofabrication,” Elsevier, 2021.
  12. [12] R. J. Hocken, N. Chakraborty, and C. Brown, “Optical metrology of surfaces,” CIRP Ann., Vol.54, No.2, pp. 169-183, 2005.
  13. [13] W. Gao et al., “On-machine and in-process surface metrology for precision manufacturing,” CIRP Ann., Vol.68, No.2, pp. 843-866, 2019.
  14. [14] Y. Wang, F. Xie, S. Ma, and L. Dong, “Review of surface profile measurement techniques based on optical interferometry,” Opt. Lasers Eng., Vol.93, pp. 164-170, 2017.
  15. [15] W. Gao and Y. Shimizu, “Optical Metrology for Precision Engineering,” De Gruyter, 2022.
  16. [16] K. Li et al., “Angle measurement based on second harmonic generation using artificial neural network,” Nanomanuf. Metrol., Vol.6, No.1, Article No.28, 2023.
  17. [17] W. Gao et al., “Machine tool calibration: Measurement, modeling, and compensation of machine tool errors,” Int. J. Mach. Tools Manuf., Vol.187, Article No.104017, 2023.
  18. [18] H. Goto, S. Kagoya, M. Michihata, and S. Takahashi, “One-step measurement of micro-periodic structures from single diffraction image,” Opt. Technol. Meas. Ind. Appl. Conf. (Prof. SPIE, Vol.12607), Article No.1260708, 2023.
  19. [19] H. Goto, S. Kadoya, M. Michihata, and S. Takahashi, “Batch measurement of micro-periodic structures by scanless tilt angle measurement method,” Proc. 2022 JSPE Autumn Conf., pp. 193-194, 2022 (in Japanese).
  20. [20] G. Straube, J. S. F. Calderón, I. Ortlepp, R. Füßl, and E. Manske, “A heterodyne interferometer with separated beam paths for high-precision displacement and angular measurements,” Nanomanuf. Metrol., Vol.4, No.3, pp. 200-207, 2021.
  21. [21] G. Wu et al., “Synthetic wavelength interferometry of an optical frequency comb for absolute distance measurement,” Sci. Rep., Vol.8, No.1, Article No.4362, 2018.
  22. [22] S. Hyun, Y.-J. Kim, Y. Kim, and S.-W. Kim, “Absolute distance measurement using the frequency comb of a femtosecond laser,” CIRP Ann., Vol.59, No.1, pp. 555-558, 2010.
  23. [23] Q. Niu et al., “Improvement of distance measurement based on dispersive interferometry using femtosecond optical frequency comb,” Sensors, Vol.22, No.14, Article No.5403, 2022.
  24. [24] K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express, Vol.14, No.13, pp. 5954-5960, 2006.
  25. [25] M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express, Vol.19, No.7, pp. 6549-6562, 2011.
  26. [26] S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett., Vol.108, No.18, Article No.183901, 2012.
  27. [27] S. A. van den Berg, S. van Eldik, and N. Bhattacharya, “Mode-resolved frequency comb interferometry for high-accuracy long distance measurement,” Sci. Rep., Vol.5, No.1, Article No.14661, 2015.
  28. [28] G. Tang et al., “Absolute distance measurement based on spectral interferometry using femtosecond optical frequency comb,” Opt. Lasers Eng., Vol.120, pp. 71-78, 2019.
  29. [29] Y.-S. Jang et al., “Nanometric precision distance metrology via hybrid spectrally resolved and homodyne interferometry in a single soliton frequency microcomb,” Phys. Rev. Lett., Vol.126, No.2, Article No.023903, 2021.
  30. [30] T. Liu et al., “Improved algorithms of data processing for dispersive interferometry using a femtosecond laser,” Sensors, Vol.23, No.10, Article No.4953, 2023.
  31. [31] Y. Guan, S. Kadoya, M. Michihata, and S. Takahashi, “The FDTD analysis for dark field in-process depth measurements of fine microgrooves,” Meas.: Sens., Vol.18, Article No.100257, 2021.
  32. [32] S. Takahashi, C. Jin, S. Ye, M. Michihata, and K. Takamasu, “Theoretical analyses of in-process depth measurements of fine microgrooves based on near-field optical response,” CIRP Ann., Vol.66, No.1, pp. 503-506, 2017.
  33. [33] D. N. Qu, X. Yuan, and R. E. Burge, “Polarization dependence of the electromagnetic field distribution across wavelength-sized relief grating surfaces,” J. Opt. Soc. Am. A, Vol.10, No.11, pp. 2317-2323, 1993.
  34. [34] V. M. Tabie, M. O. Koranteng, A. Yunus, and F. Kuuyine, “Water-jet guided laser cutting technology—An overview,” Lasers Manuf. Mater. Process., Vol.6, No.2, pp. 189-203, 2019.
  35. [35] Y. Guan, S. Masui, S. Kadoya, M. Michihata, and S. Takahashi, “Optical depth measurement for microgrooves: A self-interferometry method based on near-field polarization analysis,” Proc. 9th Int. Conf. Asian Soc. Precis. Eng. Nanotechnol. (ASPEN2022), pp. 751-754, 2022.
  36. [36] D. Perrottet et al., “Particle-free semiconductor cutting using the water jet guided laser,” Photon Process. Microelectron. Photonics IV (Proc. SPIE, Vol.5713), pp. 240-246, 2005.
  37. [37] D. Sun, F. Han, and W. Ying, “The experimental investigation of water jet-guided laser cutting of CFRP,” Int. J. Adv. Manuf. Technol., Vol.102, Nos.1-4, pp. 719-729, 2019.
  38. [38] Y. Shi, Z. Jiang, J. Cao, and K. F. Ehmann, “Texturing of metallic surfaces for superhydrophobicity by water jet guided laser micro-machining,” Appl. Surf. Sci., Vol.500, Article No.144286, 2020.
  39. [39] S. Masuda, S. Kadoya, M. Michihata, and S. Takahashi, “Absolute distance measurement in water by optical comb for in-process measurement of water-guided laser processing,” Meas.: Sens., Vol.18, Article No.100221, 2021.
  40. [40] E. S. Buice et al., “Design evaluation of a single-axis precision controlled positioning stage,” Precis. Eng., Vol.33, No.4, pp. 418-424, 2009.
  41. [41] L. Zhao, H. Chen, Y. Yao, and G. Diao, “A new approach to improving the machining precision based on dynamic sensitivity analysis,” Int. J. Mach. Tools Manuf., Vol.102, pp. 9-21, 2016.
  42. [42] L. Geppert, “Semiconductor lithography for the next millennium,” IEEE Spectr., Vol.33, No.4, pp. 33-38, 1996.
  43. [43] R. Miyashiro and Y. Fukagawa, “Optimization of alignment in semiconductor lithography equipment,” Precis. Eng., Vol.33, No.4, pp. 327-332, 2009.
  44. [44] L. M. Sanchez-Brea and T. Morlanes, “Metrological errors in optical encoders,” Meas. Sci. Technol., Vol.19, No.11, Article No.115104, 2008.
  45. [45] C.-J. Lin and S.-R. Yang, “Precise positioning of piezo-actuated stages using hysteresis-observer based control,” Mechatronics, Vol.16, No.7, pp. 417-426, 2006.
  46. [46] W. Gao, Y. Arai, A. Shibuya, S. Kiyono, and C. H. Park, “Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage,” Precis. Eng., Vol.30, No.1, pp. 96-103, 2006.
  47. [47] M. Uekita and Y. Takaya, “On-machine dimensional measurement of large parts by compensating for volumetric errors of machine tools,” Precis. Eng., Vol.43, pp. 200-210, 2016.
  48. [48] A. Kimura, W. Gao, Y. Arai, and Z. Lijiang, “Design and construction of a two-degree-of-freedom linear encoder for nanometric measurement of stage position and straightness,” Precis. Eng., Vol.34, No.1, pp. 145-155, 2010.
  49. [49] A. Kimura, W. Gao, and Z. Lijiang, “Position and out-of-straightness measurement of a precision linear air-bearing stage by using a two-degree-of-freedom linear encoder,” Meas. Sci. Technol., Vol.21, No.5, Article No.054005, 2010.
  50. [50] K. Hosono, W. Kim, A. Kimura, Y. Shimizu, and W. Gao, “Surface encoders for a mosaic scale grating,” Int. J. Automation Technol., Vol.5, No.2, pp. 91-96, 2011.
  51. [51] A. Kimura et al., “A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement,” Precis. Eng., Vol.36, No.4, pp. 576-585, 2012.
  52. [52] X. Li, W. Gao, H. Muto, Y. Shimizu, S. Ito, and S. Dian, “A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage,” Precis. Eng., Vol.37, No.3, pp. 771-781, 2013.
  53. [53] X. Li, Y. Shimizu, T. Ito, Y. Cai, S. Ito, and W. Gao, “Measurement of six-degree-of-freedom planar motions by using a multiprobe surface encoder,” Opt. Eng., Vol.53, No.12, Article No.122405, 2014.
  54. [54] H. Matsukuma et al., “Reduction in cross-talk errors in a six-degree-of-freedom surface encoder,” Nanomanuf. Metrol., Vol.2, No.2, pp. 111-123, 2019.
  55. [55] Y. Hong, R. Sato, Y. Shimizu, H. Matsukuma, and W. Gao, “A new optical configuration for the surface encoder with an expanded Z-directional measuring range,” Sensors, Vol.22, No.8, Article No.3010, 2022.
  56. [56] Y. Hong et al., “Reduction of crosstalk errors in a surface encoder having a long Z-directional measuring range,” Sensors, Vol.22, No.23, Article No.9563, 2022.
  57. [57] Y. Shimizu et al., “An absolute surface encoder with a planar scale grating of variable periods,” Precis. Eng., Vol.67, pp. 36-47, 2021.
  58. [58] E. Nichelatti and G. Salvetti, “Spatial and spectral response of a Fabry–Perot interferometer illuminated by a Gaussian beam,” Appl. Opt., Vol.34, No.22, pp. 4703-4712, 1995.
  59. [59] Y. Jiang, “High-resolution interrogation technique for fiber optic extrinsic Fabry–Perot interferometric sensors by the peak-to-peak method,” Appl. Opt., Vol.47, No.7, pp. 925-932, 2008.
  60. [60] Y. Huang et al., “An extrinsic Fabry–Perot interferometer-based large strain sensor with high resolution,” Meas. Sci. Technol., Vol.21, No.10, Article No.105308, 2010.
  61. [61] C. Ma and A. Wang, “Signal processing of white-light interferometric low-finesse fiber-optic Fabry–Perot sensors,” Appl. Opt., Vol.52, No.2, pp. 127-138, 2013.
  62. [62] D. W. Shin, H. Matsukuma, R. Sato, E. Manske, and W. Gao, “Improved peak-to-peak method for cavity length measurement of a Fabry-Perot etalon using a mode-locked femtosecond laser,” Opt. Express, Vol.31, No.16, pp. 25797-25814, 2023.
  63. [63] S. Takahashi, Y. Kajihara, and K. Takamasu, “Submicrometer thickness layer fabrication for layer-by-layer microstereolithography using evanescent light,” CIRP Ann., Vol.61, No.1, pp. 219-222, 2012.
  64. [64] Y. Suzuki, H. Tahara, M. Michihata, K. Takamasu, and S. Takahashi, “Evanescent light exposing system under nitrogen purge for nano-stereolithography,” Procedia CIRP, Vol.42, pp. 77-80, 2016.
  65. [65] D. Kong, M. Michihata, K. Takamasu, and S. Takahashi, “In-process measurement of gradient boundary of resin in evanescent-wave-based nano-stereolithography using reflection interference near critical angle,” J. Photopolym. Sci. Technol., Vol.31, No.3, pp. 441-446, 2018.
  66. [66] D. Kong, M. Michihata, K. Takamasu, and S. Takahashi, “In-process measurement of thickness of cured resin in evanescent-wave-based nano-stereolithography using critical angle reflection,” Nanomanuf. Metrol., Vol.1, No.2, pp. 112-124, 2018.
  67. [67] S. Takahashi, D. Kong, M. Michihata, and K. Takamasu, “In-process measurement for cure depth control of nano stereolithography using evanescent light,” CIRP Ann., Vol.68, No.1, pp. 527-530, 2019.
  68. [68] E. J. Ambrose, “A surface contact microscope for the study of cell movements,” Nature, Vol.178, No.4543, p. 1194, 1956.
  69. [69] P. Khajornrungruang, P. J. Dean, and S. V. Babu, “Study on dynamic observation of sub-50 nm sized particles in water using evanescent field with a compact and mobile apparatus,” Proc. ASPE 2014 Annu. Meet., pp. 73-77, 2014.
  70. [70] R. Nakajima, S. Takahashi, T. Miyoshi, and Y. Takaya, “Study on defects detection in near-surface layer of silicon wafer by using infrared evanescent light (1st report) – Theoretical, experimental discussions –,” J. Jpn. Soc. Precis. Eng., Vol.69, No.9, pp. 1291-1295, 2003 (in Japanese).
  71. [71] P. Khajornrungruang et al., “Light scattering model for individual sub-100-nm particle size determination in an evanescent field,” Jpn. J. Appl. Phys., Vol.55, No.6S3, Article No.06JG02, 2016.
  72. [72] K. Kimura, K. Suzuki, and P. Khajornrungruang, “Study on fine particle behavior in slurry flow between wafer and polishing pad as a material removal process in CMP,” Int. Conf. Plan./CMP Technol. (ICPT 2012), 2012.
  73. [73] Y. Terayama et al., “Real time nanoscale cleaning phenomenon observation during PVA brush scrubbing by evanescent field,” ECS Trans., Vol.92, No.2, pp. 191-198, 2019.
  74. [74] C. K. Ranaweera et al., “Real-time visualization of the cleaning of ceria particles from silicon dioxide films using PVA brush scrubbing,” ECS J. Solid State Sci. Technol., Vol.10, No.8, Article No.084004, 2021.
  75. [75] T. Permpatdechakul, P. Khajornrungruang, K. Suzuki, and A. Baba, “Study on nanoscale observatory in polishing phenomena applying optical evanescent field – 2nd report: 4H-SiC Polishing with nano-silica abrasive,” Proc. 2021 JSPE Autumn Conf., pp. 102-103, 2021.
  76. [76] M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Three-Dimens. Multidimens. Microsc.: Image Acquis. Proc. VII (Proc. SPIE, Vol.3919), pp. 141-150, 2000.
  77. [77] S. Usuki, H. Nishioka, S. Takahashi, and K. Takamasu, “Development of super-resolution optical inspection system for semiconductor defects using standing wave illumination shift,” Optomechatron. Sens. Instrum. Comput.-Vis. Syst. (Proc. SPIE, Vol.6375), Article No.637508, 2006.
  78. [78] R. Kudo, S. Usuki, S. Takahashi, and K. Takamasu, “Fundamental verification for 2-dimensional super-resolution optical inspection for semiconductor defects by using standing wave illumination shift,” Proc. 19th IMEKO World Congr. 2009 (IMEKO XIX), pp. 714-719, 2009.
  79. [79] S. Takahashi, R. Kudo, S. Usuki, and K. Takamasu, “Super resolution optical measurements of nanodefects on Si wafer surface using infrared standing evanescent wave,” CIRP Ann., Vol.60, No.1, pp. 523-526, 2011.
  80. [80] H. Kume, M. Michihata, and S. Takahashi, “Theoretical analysis on coherent optical super-resolution method for inspection of functional micro-structured surfaces with complex-amplitude-response distribution,” Precis. Eng., Vol.80, pp. 138-159, 2023.
  81. [81] Y. Guan, H. Kume, S. Kadoya, M. Michihata, and S. Takahashi, “The FDTD analysis of near-field response for microgroove structure with standing wave illumination for the realization of coherent structured illumination microscopy,” J. Manuf. Sci. Eng., Vol.144, No.3, Article No.031004, 2022.
  82. [82] H. Nishioka, S. Takahashi, and K. Takamasu, “A super-resolution microscopy with standing evanescent light and image reconstruction method,” Proc. 18th IMEKO World Congr. (IMEKO XVIII), pp. 1210-1215, 2006.
  83. [83] E. Mudry et al., “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics, Vol.6, No.5, pp. 312-315, 2012.
  84. [84] T. Ono, H. Kume, M. Michihata, K. Takamasu, and S. Takahashi, “The reconstruction process for blind structured illumination microscopy with deep learning,” Proc. 2019 JSPE Spring Conf., pp. 908-909, 2019 (in Japanese).
  85. [85] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv:1412.6980, 2014.
  86. [86] A. Lucchi, Y. Li, and P. Fua, “Learning for structured prediction using approximate subgradient descent with working sets,” 2013 IEEE Conf. Comput. Vis. Pattern Recognit., pp. 1987-1994, 2013.
  87. [87] Y. Guan, S. Masui, S. Kadoya, M. Michihata, and S. Takahashi, “Super-resolution imaging of sub-diffraction-limited pattern with superlens based on deep learning,” 15th Int. Symp. Meas. Technol. Intell. Instrum. (ISMTII 2023), A084, 2023.
  88. [88] C.-S. Kim and H. Yoo, “Three-dimensional confocal reflectance microscopy for surface metrology,” Meas. Sci. Technol., Vol.32, No.10, Article No.102002, 2021.
  89. [89] L.-C. Chen, “Confocal microscopy for surface profilometry,” W. Gao (Ed.), “Metrology,” pp. 59-92, Springer, 2019.
  90. [90] R. Sato et al., “Signal processing and artificial intelligence for dual-detection confocal probes,” Int. J. Precis. Eng. Manuf., Vol.25, No.1, pp. 199-223, 2024.
  91. [91] M. Minsky, “Microscopy apparatus,” U.S. Patent 3013467, 1962.
  92. [92] M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning, Vol.10, No.4, pp. 128-138, 1988.
  93. [93] T. Wilson and C. Sheppard, “Theory and Practice of Scanning Optical Microscopy,” Academic Press, 1984.
  94. [94] M. Gu, “Principles of three-dimensional imaging in confocal microscopes,” World Scientific Publishing, Co. Pte. Ltd., 1996.
  95. [95] H. J. Tiziani and H.-M. Uhde, “Three-dimensional image sensing by chromatic confocal microscopy,” Appl. Opt., Vol.33, No.10, pp. 1838-1843, 1994.
  96. [96] M. A. Browne, O. Akinyemi, and A. Boyde, “Confocal surface profiling utilizing chromatic aberration,” Scanning, Vol.14, No.3, pp. 145-153, 1992.
  97. [97] J. Bai et al., “Three-probe error separation with chromatic confocal sensors for roundness measurement,” Nanomanuf. Metrol., Vol.4, No.4, pp. 247-255, 2021.
  98. [98] M. Pillarz, A. von Freyberg, D. Stöbener, and A. Fischer, “Gear shape measurement potential of laser triangulation and confocal-chromatic distance sensors,” Sensors, Vol.21, No.3, Article No.937, 2021.
  99. [99] L. Ye, J. Qian, H. Haitjema, and D. Reynaerts, “On-machine chromatic confocal measurement for micro-EDM drilling and milling,” Precis. Eng., Vol.76, pp. 110-123, 2022.
  100. [100] C. Liu, G. Lu, C. Liu, and D. Li, “Compact chromatic confocal sensor for displacement and thickness measurements,” Meas. Sci. Technol., Vol.34, No.5, Article No.055104, 2023.
  101. [101] T. Mueller, M. Jordan, T. Schneider, A. Poesch, and E. Reithmeier, “Measurement of steep edges and undercuts in confocal microscopy,” Micron, Vol.84, pp. 79-95, 2016.
  102. [102] K. Miura, A. Nose, H. Suzuki, and M. Okada, “Cutting tool edge and textured surface measurements with a point autofocus probe,” Int. J. Automation Technol., Vol.11, No.5, pp. 761-765, 2017.
  103. [103] K. Zangl, R. Danzl, F. Helmli, and M. Prantl, “Highly accurate optical µCMM for measurement of micro holes,” Procedia CIRP, Vol.75, pp. 397-402, 2018.
  104. [104] K. Maruno, M. Michihata, Y. Mizutani, and Y. Takaya, “Fundamental study on novel on-machine measurement method of a cutting tool edge profile with a fluorescent confocal microscopy,” Int. J. Automation Technol., Vol.10, No.1, pp. 106-113, 2016.
  105. [105] Y. Takaya, K. Maruno, M. Michihata, and Y. Mizutani, “Measurement of a tool wear profile using confocal fluorescence microscopy of the cutting fluid layer,” CIRP Ann., Vol.65, No.1, pp. 467-470, 2016.
  106. [106] K. Matsumoto, Y. Mizutani, and Y. Takaya, “On-machine measurement of tool edge shape by using fluorescence of cutting fluid,” Proc. 13th Manuf. Mach. Tool Conf., Vol.13, Article No.D21, 2019.
  107. [107] M. Mikulewitsch, M. M. Auerswald, A. von Freyberg, and A. Fischer, “Geometry measurement of submerged metallic micro-parts using confocal fluorescence microscopy,” Nanomanuf. Metrol., Vol.1, No.3, pp. 171-179, 2018.
  108. [108] R. Sato, Y. Shimizu, H. Matsukuma, and W. Gao, “Influence of surface tilt angle on a chromatic confocal probe with a femtosecond laser,” Appl. Sci., Vol.12, No.9, Article No.4736, 2022.
  109. [109] R. Sato, Y. Shimizu, H. Shimizu, H. Matsukuma, and W. Gao, “Confocal probe based on the second harmonic generation for measurement of linear and angular displacements,” Opt. Express, Vol.31, No.7, pp. 11982-11993, 2023.
  110. [110] M. Michihata, A. Fukui, K. Maruno, T. Hayashi, and Y. Takaya, “Fluorescence signal detection for optical micro-three dimensional measurement based on confocal microscopy,” Proc. 11th Symp. Laser Metrol. Precis. Meas. Insp. Ind. (LMPMI), pp. 123-126, 2014.
  111. [111] M. Michihata, A. Fukui, T. Hayashi, and Y. Takaya, “Sensing a vertical surface by measuring a fluorescence signal using a confocal optical system,” Meas. Sci. Technol., Vol.25, No.6, Article No.064004, 2014.
  112. [112] K. Kawami, S. Kadoya, M. Michihata, and S. Takahashi, “Autofluorescence signal detection from sidewall surface for 3-dimensional measurement,” 19th Int. Conf. Precis. Eng. (ICPE2022), C170, 2022.
  113. [113] X. Chen et al., “A chromatic confocal probe with a mode-locked femtosecond laser source,” Opt. Laser Technol., Vol.103, pp. 359-366, 2018.
  114. [114] R. Sato, Y. Shimizu, H. Matsukuma, and W. Gao, “Profile measurement by using a femtosecond laser chromatic confocal probe,” Proc. JSME 2020 Conf. Lead. Edge Manuf./Mater. Process., Article No.V001T07A008, 2020.
  115. [115] H. Matsukuma, R. Sato, Y. Shimizu, and W. Gao, “Measurement range expansion of chromatic confocal probe with supercontinuum light source,” Int. J. Automation Technol., Vol.15, No.4, pp. 529-536, 2021.
  116. [116] C. Chen, Y. Shimizu, R. Sato, H. Matsukuma, and W. Gao, “An off-axis differential method for improvement of a femtosecond laser differential chromatic confocal probe,” Appl. Sci., Vol.10, No.20, Article No.7235, 2020.
  117. [117] R. Sato, Y. Shimizu, C. Chen, H. Matsukuma, and W. Gao, “Investigation and improvement of thermal stability of a chromatic confocal probe with a mode-locked femtosecond laser source,” Appl. Sci., Vol.9, No.19, Article No.4084, 2019.
  118. [118] C. Chen et al., “A method for expansion of Z-directional measurement range in a mode-locked femtosecond laser chromatic confocal probe,” Appl. Sci., Vol.9, No.3, Article No.454, 2019.
  119. [119] R. Sato, C. Chen, H. Matsukuma, Y. Shimizu, and W. Gao, “A new signal processing method for a differential chromatic confocal probe with a mode-locked femtosecond laser,” Meas. Sci. Technol., Vol.31, No.9, Article No.094004, 2020.
  120. [120] M. Neisser, “International roadmap for devices and systems lithography roadmap,” J. Micro/Nanopatterning Mater. Metrol., Vol.20, No.4, Article No.044601, 2021.
  121. [121] A. Sofronov et al., “Optical detection of deeply subwavelength nanoparticles for silicon metrology,” Phys. Rev. Appl., Vol.15, No.6, Article No.064049, 2021.
  122. [122] K. Tachibana, M. Michihata, S. Takahashi, and K. Takamasu, “High-sensitive optical measurement of fine particulate defects on Si wafer surface with liquid probe,” Proc. 8th Int. Conf. Lead. Edge Manuf. 21st Century (LEM21), Article No.1507, 2015.
  123. [123] K. Tachibana, M. Michihata, K. Takamasu, and S. Takahashi, “Smart optical measurement probe for autonomously detecting nano-defects on bare semiconductor wafer surface: Verification of proposed concept,” Precis. Eng., Vol.61, pp. 93-102, 2020.
  124. [124] C. Odagiri, S. Kadoya, M. Michihata, K. Takamasu, and S. Takahashi, “Optical detection of fine particulate defects with autonomous search-and-split liquid probe,” 18th Int. Conf. Precis. Eng. (ICPE 2020), D-1-4, 2020.
  125. [125] Y. Guan, S. Masui, S. Kadoya, M. Michihata, and S. Takahashi, “Smart optical measurement probe for autonomously detecting nano-defects on bare semiconductor wafer surface: Highly sensitive observation system using phase-contrast microscopy with a spatial light modulator,” J. Phys.: Conf. Ser., Vol.2368, Article No.012014, 2022.
  126. [126] M. Michihata, S. Murakami, S. Kadoya, and S. Takahashi, “Measurement of diameter of sub-micrometer fiber based on analysis of scattered light intensity distribution under standing wave illumination,” CIRP Ann., Vol.71, No.1, pp. 421-424, 2022.
  127. [127] S. Murakami, M. Michihata, S. Kadoya, and S. Takahashi, “In-process diameter measurement technique for nano/micro-optical fiber with standing wave illumination – Evaluation of measurement performance,” Meas.: Sens., Vol.18, Article No.100185, 2021.
  128. [128] M. Michihata et al., “In-process diameter measurement technique for micro-optical fiber with standing wave illumination,” Nanomanuf. Metrol., Vol.4, No.1, pp. 28-36, 2021.
  129. [129] M. Michihata et al., “Surface imaging technique by an optically trapped microsphere in air condition,” Nanomanuf. Metrol., Vol.1, No.1, pp. 32-38, 2018.
  130. [130] S. Takushima et al., “Optical in-process height measurement system for process control of laser metal-wire deposition,” Precis. Eng., Vol.62, pp. 23-29, 2020.
  131. [131] Y. Mizutani, S. Kataoka, T. Uenohara, and Y. Takaya, “Ghost imaging with deep learning for position mapping of weakly scattered light source,” Nanomanuf. Metrol., Vol.4, No.1, pp. 37-45, 2021.
  132. [132] A. E. Ennos and M. S. Virdee, “High accuracy profile measurement of quasi-conical mirror surfaces by laser autocollimation,” Precis. Eng., Vol.4, No.1, pp. 5-8, 1982.
  133. [133] A. E. Ennos and M. S. Virdee, “Precision measurement of surface form by laser profilometry,” Wear, Vol.109, Nos.1-4, pp. 275-286, 1986.
  134. [134] C. R. Steinmetz, “Sub-micron position measurement and control on precision machine tools with laser interferometry,” Precis. Eng., Vol.12, No.1, pp. 12-24, 1990.
  135. [135] J. B. Bryan, “The Abbé principle revisited: An updated interpretation,” Precis. Eng., Vol.1, No.3, pp. 129-132, 1979.
  136. [136] R. Köning, J. Flügge, and H. Bosse, “A method for the in situ determination of Abbe errors and their correction,” Meas. Sci. Technol., Vol.18, No.2, pp. 476-481, 2007.
  137. [137] P. Yang et al., “Development of high-precision micro-coordinate measuring machine: Multi-probe measurement system for measuring yaw and straightness motion error of XY linear stage,” Precis. Eng., Vol.35, No.3, pp. 424-430, 2011.
  138. [138] C. Lee, G. H. Kim, and S.-K. Lee, “Design and construction of a single unit multi-function optical encoder for a six-degree-of-freedom motion error measurement in an ultraprecision linear stage,” Meas. Sci. Technol., Vol.22, No.10, Article No.105901, 2011.
  139. [139] K. C. Fan, M. J. Chen, and W. M. Huang, “A six-degree-of-freedom measurement system for the motion accuracy of linear stages,” Int. J. Mach. Tools Manuf., Vol.38, No.3, pp. 155-164, 1998.
  140. [140] W. Gao, Y. Saito, H. Muto, Y. Arai, and Y. Shimizu, “A three-axis autocollimator for detection of angular error motions of a precision stage,” CIRP Ann., Vol.60, No.1, pp. 515-518, 2011.
  141. [141] P. S. Huang, S. Kiyono, and O. Kamada, “Angle measurement based on the internal-reflection effect: A new method,” Appl. Opt., Vol.31, No.28, pp. 6047-6055, 1992.
  142. [142] C.-H. Liu, W.-Y. Jywe, and C.-K. Chen, “Development of a simple system for the simultaneous measurement of pitch, yaw and roll angular errors of a linear stage,” Int. J. Adv. Manuf. Technol., Vol.26, Nos.7-8, pp. 808-813, 2005.
  143. [143] J. Luo and W. Zhao, “Autocollimator for small angle measurement over long distance,” Proc. 27th Conf. Spacecr. TT&C Technol. China, pp. 263-271, 2014.
  144. [144] Y. Shimizu, T. Maruyama, S. Ito, and W. Gao, “A three-axis angle sensor with a linear encoder scale reflector,” Appl. Mech. Mater., Vol.870, pp. 141-146, 2017.
  145. [145] Y. Saito, Y. Arai, and W. Gao, “Detection of three-axis angles by an optical sensor,” Sens. Actuators A: Phys., Vol.150, No.2, pp. 175-183, 2009.
  146. [146] Y. Saito, Y. Arai, and W. Gao, “Investigation of an optical sensor for small tilt angle detection of a precision linear stage,” Meas. Sci. Technol., Vol.21, No.5, Article No.054006, 2010.
  147. [147] Y.-L. Chen, Y. Shimizu, Y. Kudo, S. Ito, and W. Gao, “Mode-locked laser autocollimator with an expanded measurement range,” Opt. Express, Vol.24, No.14, pp. 15554-15569, 2016.
  148. [148] Y. Shimizu, Y. Kudo, Y.-L. Chen, S. Ito, and W. Gao, “An optical lever by using a mode-locked laser for angle measurement,” Precis. Eng., Vol.47, pp. 72-80, 2017.
  149. [149] Y.-L. Chen et al., “Optical frequency domain angle measurement in a femtosecond laser autocollimator,” Opt. Express, Vol.25, No.14, pp. 16725-16738, 2017.
  150. [150] Y.-L. Chen et al., “Laser autocollimation based on an optical frequency comb for absolute angular position measurement,” Precis. Eng., Vol.54, pp. 284-293, 2018.
  151. [151] Y. Shimizu, K. Uehara, H. Matsukuma, and W. Gao, “Evaluation of the grating period based on laser diffraction by using a mode-locked femtosecond laser beam,” J. Adv. Mech. Des. Syst. Manuf., Vol.12, No.5, Article No.18-00173, 2018.
  152. [152] Y. Shimizu et al., “Measurement of the apex angle of a small prism by an oblique-incidence mode-locked femtosecond laser autocollimator,” Precis. Eng., Vol.67, pp. 339-349, 2021.
  153. [153] S.-T. Lin, S.-L. Yeh, and Z.-F. Lin, “Angular probe based on using Fabry-Perot etalon and scanning technique,” Opt. Express, Vol.18, No.3, pp. 1794-1800, 2010.
  154. [154] L. L. Sánchez-Soto, J. J. Monzón, and G. Leuchs, “The many facets of the Fabry–Perot,” Eur. J. Phys., Vol.37, No.6, Article No.064001, 2016.
  155. [155] J. L. Santos, A. P. Leite, and D. A. Jackson, “Optical fiber sensing with a low-finesse Fabry–Perot cavity,” Appl. Opt., Vol.31, No.34, pp. 7361-7366, 1992.
  156. [156] D. W. Shin, H. Matsukuma, R. Sato, and W. Gao, “Fabry-Pérot angle sensor using a mode-locked femtosecond laser source,” Opt. Express, Vol.30, No.26, pp. 46366-46382, 2022.
  157. [157] N. Ismail, C. C. Kores, D. Geskus, and M. Pollnau, “Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity,” Opt. Express, Vol.24, No.15, pp. 16366-16389, 2016.
  158. [158] H. Matsukuma, S. Madokoro, W. D. Astuti, Y. Shimizu, and W. Gao, “A new optical angle measurement method based on second harmonic generation with a mode-locked femtosecond laser,” Nanomanuf. Metrol., Vol.2, No.4, pp. 187-198, 2019.
  159. [159] W. D. Astuti et al., “An optical frequency domain angle measurement method based on second harmonic generation,” Sensors, Vol.21, No.2, Article No.670, 2021.
  160. [160] K. Li, W. D. Astuti, R. Sato, H. Matsukuma, and W. Gao, “Theoretical investigation for angle measurement based on femtosecond maker fringe,” Appl. Sci., Vol.12, No.7, Article No.3702, 2022.
  161. [161] W. D. Astuti et al., “A second harmonic wave angle sensor with a collimated beam of femtosecond laser,” Appl. Sci., Vol.12, No.10, Article No.5211, 2022.
  162. [162] K. Li et al., “Investigation of angle measurement based on direct third harmonic generation in centrosymmetric crystals,” Appl. Sci., Vol.13, No.2, Article No.996, 2023.
  163. [163] M. Uekita and Y. Takaya, “Tool condition monitoring for form milling of large parts by combining spindle motor current and acoustic emission signals,” Int. J. Adv. Manuf. Technol., Vol.89, Nos.1-4, pp. 65-75, 2016.
  164. [164] M. Uekita and Y. Takaya, “Tool condition monitoring technique for deep-hole drilling of large components based on chatter identification in time-frequency domain,” Measurement, Vol.103, pp. 199-207, 2017.
  165. [165] A. Matsubara, “Measurement technologies for machine tools,” J. Jpn. Soc. Precis. Eng., Vol.83, No.3, pp. 191-194, 2017 (in Japanese).
  166. [166] B. Z. Balázs, N. Geier, M. Takács, and J. P. Davim, “A review on micro-milling: Recent advances and future trends,” Int. J. Adv. Manuf. Technol., Vol.112, Nos.3-4, pp. 655-684, 2021.
  167. [167] M. Kuntoğlu et al., “A review of indirect tool condition monitoring systems and decision-making methods in turning: Critical analysis and trends,” Sensors, Vol.21, No.1, Article No.108, 2020.
  168. [168] T. Mohanraj, S. Shankar, R. Rajasekar, N. R. Sakthivel, and A. Pramanik, “Tool condition monitoring techniques in milling process – A review,” J. Mater. Res. Technol., Vol.9, No.1, pp. 1032-1042, 2020.
  169. [169] M. Yadi, Y. Morimoto, M. Ueki, and Y. Takaya, “In-plane vibration detection using sampling moiré method,” J. Phys.: Photonics, Vol.3, No.2, Article No.024005, 2021.
  170. [170] G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett., Vol.56, No.9, pp. 930-933, 1986.
  171. [171] Y.-L. Chen, Y. Xu, Y. Shimizu, H. Matsukuma, and W. Gao, “High quality-factor quartz tuning fork glass probe used in tapping mode atomic force microscopy for surface profile measurement,” Meas. Sci. Technol., Vol.29, No.6, Article No.065014, 2018.
  172. [172] W. Gao, S. Goto, K. Hosobuchi, S. Ito, and Y. Shimizu, “A noncontact scanning electrostatic force microscope for surface profile measurement,” CIRP Ann., Vol.61, No.1, pp. 471-474, 2012.
  173. [173] P. Günther, U. C. Fischer, and K. Dransfeld, “Scanning near-field acoustic microscopy,” Appl. Phys. B, Vol.48, No.1, pp. 89-92, 1989.
  174. [174] T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, “Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity,” J. Appl. Phys., Vol.69, No.2, pp. 668-673, 1991.
  175. [175] W. Gao, J. Aoki, B.-F. Ju, and S. Kiyono, “Surface profile measurement of a sinusoidal grid using an atomic force microscope on a diamond turning machine,” Precis. Eng., Vol.31, No.3, pp. 304-309, 2007.
  176. [176] S. Goto, K. Hosobuchi, and W. Gao, “An ultra-precision scanning tunneling microscope Z-scanner for surface profile measurement of large amplitude micro-structures,” Meas. Sci. Technol., Vol.22, No.8, Article No.085101, 2011.
  177. [177] W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng., Vol.27, No.3, pp. 289-298, 2003.
  178. [178] F. Fang and F. Xu, “Recent advances in micro/nano-cutting: Effect of tool edge and material properties,” Nanomanuf. Metrol., Vol.1, No.1, pp. 4-31, 2018.
  179. [179] S. R. Patterson and E. B. Magrab, “Design and testing of a fast tool servo for diamond turning,” Precis. Eng., Vol.7, No.3, pp. 123-128, 1985.
  180. [180] Y. Okazaki, “A micro-positioning tool post using a piezoelectric actuator for diamond turning machines,” Precis. Eng., Vol.12, No.3, pp. 151-156, 1990.
  181. [181] Y. J. Noh, Y. Arai, M. Tano, and W. Gao, “Fabrication of large-area micro-lens arrays with fast tool control,” Int. J. Precis. Eng. Manuf., Vol.9, No.4, pp. 32-38, 2008.
  182. [182] K. W. Lee, Y. J. Noh, Y. Arai, Y. Shimizu, and W. Gao, “Precision measurement of micro-lens profile by using a force-controlled diamond cutting tool on an ultra-precision lathe,” Int. J. Precis. Technol., Vol.2, Nos.2-3, pp. 211-225, 2011.
  183. [183] W. Gao et al., “Precision tool setting for fabrication of a microstructure array,” CIRP Ann., Vol.62, No.1, pp. 523-526, 2013.
  184. [184] Y.-L. Chen et al., “Self-evaluation of the cutting edge contour of a microdiamond tool with a force sensor integrated fast tool servo on an ultra-precision lathe,” Int. J. Adv. Manuf. Technol., Vol.77, Nos.9-12, pp. 2257-2267, 2015.
  185. [185] Y.-L. Chen et al., “On-machine measurement of microtool wear and cutting edge chipping by using a diamond edge artifact,” Precis. Eng., Vol.43, pp. 462-467, 2016.
  186. [186] Y.-L. Chen et al., “An in-process measurement method for repair of defective microstructures by using a fast tool servo with a force sensor,” Precis. Eng., Vol.39, pp. 134-142, 2015.
  187. [187] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and prospects,” Science, Vol.349, No.6245, pp. 255-260, 2015.
  188. [188] J. Lemley, S. Bazrafkan, and P. Corcoran, “Deep learning for consumer devices and services: Pushing the limits for machine learning, artificial intelligence, and computer vision,” IEEE Consum. Electron. Mag., Vol.6, No.2, pp. 48-56, 2017.
  189. [189] L. Deng and X. Li, “Machine learning paradigms for speech recognition: An overview,” IEEE Trans. Audio Speech Lang. Process., Vol.21, No.5, pp. 1060-1089, 2013.
  190. [190] D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the usages of deep learning for natural language processing,” IEEE Trans. Neural Netw. Learn. Syst., Vol.32, No.2, pp. 604-624, 2021.
  191. [191] S. Wang, W. Chaovalitwongse, and R. Babuska, “Machine learning algorithms in bipedal robot control,” IEEE Trans. Syst. Man Cybern., Part C (Appl. Rev.), Vol.42, No.5, pp. 728-743, 2012.
  192. [192] G. Litjens et al., “A survey on deep learning in medical image analysis,” Med. Image Anal., Vol.42, pp. 60-88, 2017.
  193. [193] H. Wang et al., “Deep learning enables cross-modality super-resolution in fluorescence microscopy,” Nat. Methods, Vol.16, No.1, pp. 103-110, 2019.
  194. [194] S. Liu et al., “Machine learning aided solution to the inverse problem in optical scatterometry,” Measurement, Vol.191, Article No.110811, 2022.
  195. [195] J. Shi et al., “High-precision autocollimation method based on a multiscale convolution neural network for angle measurement,” Opt. Express, Vol.30, No.16, pp. 29821-29832, 2022.
  196. [196] G. Ciaburro and G. Iannace, “Machine-learning-based methods for acoustic emission testing: A review,” Appl. Sci., Vol.12, No.20, Article No.10476, 2022.
  197. [197] J. Tejedor et al., “Machine learning methods for pipeline surveillance systems based on distributed acoustic sensing: A review,” Appl. Sci., Vol.7, No.8, Article No.841, 2017.
  198. [198] M. S. Alajmi and A. M. Almeshal, “Modeling of cutting force in the turning of AISI 4340 using Gaussian process regression algorithm,” Appl. Sci., Vol.11, No.9, Article No.4055, 2021.
  199. [199] L.-W. Tseng, T.-S. Hu, and Y.-C. Hu, “A smart tool holder calibrated by machine learning for measuring cutting force in fine turning and its application to the specific cutting force of low carbon steel S15C,” Machines, Vol.9, No.9, Article No.190, 2021.
  200. [200] P. Charalampous, “Prediction of cutting forces in milling using machine learning algorithms and finite element analysis,” J. Mater. Eng. Perform., Vol.30, No.3, pp. 2002-2013, 2021.
  201. [201] V. F. C. Sousa et al., “Cutting forces assessment in CNC machining processes: A critical review,” Sensors, Vol.20, No.16, Article No.4536, 2020.
  202. [202] S. Bhopale, K. R. Jagatap, G. K. Lamdhade, and P. D. Darade, “Cutting forces during orthogonal machining process of AISI 1018 steel: Numerical and experimental modeling,” Mater. Today: Proc., Vol.4, No.8, pp. 8454-8462, 2017.
  203. [203] A. du Preez and G. A. Oosthuizen, “Machine learning in cutting processes as enabler for smart sustainable manufacturing,” Procedia Manuf., Vol.33, pp. 810-817, 2019.
  204. [204] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support vector machines,” IEEE Intell. Syst. Their Appl., Vol.13, No.4, pp. 18-28, 1998.
  205. [205] M. Seeger, “Gaussian processes for machine learning,” Int. J. Neural Syst., Vol.14, No.2, pp. 69-106, 2004.
  206. [206] D. Cica, B. Sredanovic, S. Tesic, and D. Kramar, “Predictive modeling of turning operations under different cooling/lubricating conditions for sustainable manufacturing with machine learning techniques,” Appl. Comput. Inform., Vol.20, Nos.1-2, pp. 162-180, 2024.
  207. [207] Y. Zhang and X. Xu, “Machine learning cutting force, surface roughness, and tool life in high speed turning processes,” Manuf. Lett., Vol.29, pp. 84-89, 2021.
  208. [208] Z. Jurkovic, G. Cukor, M. Brezocnik, and T. A. Brajkovic, “A comparison of machine learning methods for cutting parameters prediction in high speed turning process,” J. Intell. Manuf., Vol.29, No.8, pp. 1683-1693, 2018.
  209. [209] X. Xu, Y. Zhang, Y. Li, and Y. Li, “Machine learning cutting forces in milling processes of functionally graded materials,” Adv. Comput. Intell., Vol.2, No.3, Article No.25, 2022.
  210. [210] T. Irgolic, F. Cus, M. Paulic, and J. Balic, “Prediction of cutting forces with neural network by milling functionally graded material,” Procedia Eng., Vol.69, pp. 804-813, 2014.
  211. [211] J. Ma et al., “Tool wear mechanism and prediction in milling TC18 titanium alloy using deep learning,” Measurement, Vol.173, Article No.108554, 2021.
  212. [212] D. Kong, Y. Chen, and N. Li, “Monitoring tool wear using wavelet package decomposition and a novel gravitational search algorithm–least square support vector machine model,” Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., Vol.234, No.3, pp. 822-836, 2020.
  213. [213] C. Xu, Y. Chai, H. Li, and Z. Shi, “Estimation the wear state of milling tools using a combined ensemble empirical mode decomposition and support vector machine method,” J. Adv. Mech. Des. Syst. Manuf., Vol.12, No.2, Article No.18-00166, 2018.
  214. [214] B. Pang, S.-J. Guo, J.-L. Wang, and H.-B. Li, “Real-time monitoring of tool wear in high-speed milling of aircraft structural parts,” 2019 Int. Conf. Qual. Reliab. Risk Maint. Saf. Eng., pp. 761-767, 2019.
  215. [215] Y. Kim, T. Kim, B. D. Youn, and S.-H. Ahn, “Machining quality monitoring (MQM) in laser-assisted micro-milling of glass using cutting force signals: An image-based deep transfer learning,” J. Intell. Manuf., Vol.33, No.6, pp. 1813-1828, 2022.
  216. [216] G. Terrazas, G. Martínez-Arellano, P. Benardos, and S. Ratchev, “Online tool wear classification during dry machining using real time cutting force measurements and a CNN approach,” J. Manuf. Mater. Process., Vol.2, No.4, Article No.72, 2018.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 12, 2024