single-au.php

IJAT Vol.18 No.4 pp. 545-580
doi: 10.20965/ijat.2024.p0545
(2024)

Review:

Advanced Sensing and Machine Learning Technologies for Intelligent Measurement in Smart and Precision Manufacturing

Ryo Sato*,† ORCID Icon, Kuangyi Li* ORCID Icon, Masaki Michihata** ORCID Icon, Satoru Takahashi** ORCID Icon, and Wei Gao* ORCID Icon

*Department of Finemechanics, Tohoku University
6-6-01 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan

Corresponding author

**Department of Precision Engineering, The University of Tokyo
Tokyo, Japan

Received:
January 16, 2024
Accepted:
April 12, 2024
Published:
July 5, 2024
Keywords:
intelligent measurement, sensing, machine learning, dimensional metrology, process monitoring
Abstract

This paper provides an overview of state-of-the-art sensing and machine learning technologies for intelligent measurement in smart and precision manufacturing. Length, angle, and force are identified as the fundamental quantities for production quality management based on process monitoring as well as geometrical metrology in optical lithography and mechanical machining. Advancements in length-based measurement technologies such as laser interferometers and optical encoders, as well as advancements regarding depth and thickness measurements, are presented. Various types of optical microscopes, such as evanescent field microscopes, structured illumination microscopes, and confocal microscopes, are also described. For angle-based measurement technologies, in addition to the conventional continuous-wave laser autocollimators, the newly developed Fabry–Pérot angle sensor and nonlinear optics angle sensor using an ultrashort pulse laser are presented. Finally, on-machine and in-process force sensing and machining learning techniques for dimensional and machining process monitoring are reviewed.

Cite this article as:
R. Sato, K. Li, M. Michihata, S. Takahashi, and W. Gao, “Advanced Sensing and Machine Learning Technologies for Intelligent Measurement in Smart and Precision Manufacturing,” Int. J. Automation Technol., Vol.18 No.4, pp. 545-580, 2024.
Data files:
References
  1. [1] W. Gao, “Precision Nanometrology: Sensors and Measuring Systems for Nanomanufacturing,” Springer, 2010. https://doi.org/10.1007/978-1-84996-254-4
  2. [2] F. Z. Fang et al., “Nanomanufacturing—Perspective and applications,” CIRP Ann., Vol.66, No.2, pp. 683-705, 2017. https://doi.org/10.1016/j.cirp.2017.05.004
  3. [3] A. Archenti, W. Gao, A. Donmez, E. Savio, and N. Irino, “Integrated metrology for advanced manufacturing,” CIRP Ann., 2024. https://doi.org/10.1016/j.cirp.2024.05.003
  4. [4] W. Gao et al., “Measurement technologies for precision positioning,” CIRP Ann., Vol.64, No.2, pp. 773-796, 2015. https://doi.org/10.1016/j.cirp.2015.05.009
  5. [5] G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics, Vol.4, No.4, pp. 441-471, 2012. https://doi.org/10.1364/AOP.4.000441
  6. [6] S. Yang and G. Zhang, “A review of interferometry for geometric measurement,” Meas. Sci. Technol., Vol.29, No.10, Article No.102001, 2018. 10.1088/1361-6501/aad732
  7. [7] M. Conroy and J. Armstrong, “A comparison of surface metrology techniques,” J. Phys.: Conf. Ser., Vol.13, pp. 458-465, 2005. https://doi.org/10.1088/1742-6596/13/1/106
  8. [8] G. Dai, K. Hahm, L. Sebastian, and M. Heidelmann, “Comparison of EUV photomask metrology between CD-AFM and TEM,” Nanomanuf. Metrol., Vol.5, No.2, pp. 91-100, 2022. https://doi.org/10.1007/s41871-022-00124-y
  9. [9] Zygo Corporation, “Verifire™ Laser Interferometer.” https://www.zygo.com/products/metrology-systems/laser-interferometers/verifire [Accessed November 6, 2023]
  10. [10] W. Gao, P. S. Huang, T. Yamada, and S. Kiyono, “A compact and sensitive two-dimensional angle probe for flatness measurement of large silicon wafers,” Precis. Eng., Vol.26, No.4, pp. 396-404, 2002. https://doi.org/10.1016/S0141-6359(02)00121-6
  11. [11] W. Gao, “Surface Metrology for Micro- and Nanofabrication,” Elsevier, 2021. https://doi.org/10.1016/C2018-0-02291-4
  12. [12] R. J. Hocken, N. Chakraborty, and C. Brown, “Optical metrology of surfaces,” CIRP Ann., Vol.54, No.2, pp. 169-183, 2005. https://doi.org/10.1016/S0007-8506(07)60025-0
  13. [13] W. Gao et al., “On-machine and in-process surface metrology for precision manufacturing,” CIRP Ann., Vol.68, No.2, pp. 843-866, 2019. https://doi.org/10.1016/j.cirp.2019.05.005
  14. [14] Y. Wang, F. Xie, S. Ma, and L. Dong, “Review of surface profile measurement techniques based on optical interferometry,” Opt. Lasers Eng., Vol.93, pp. 164-170, 2017. https://doi.org/10.1016/j.optlaseng.2017.02.004
  15. [15] W. Gao and Y. Shimizu, “Optical Metrology for Precision Engineering,” De Gruyter, 2022. https://doi.org/10.1515/9783110542363
  16. [16] K. Li et al., “Angle measurement based on second harmonic generation using artificial neural network,” Nanomanuf. Metrol., Vol.6, No.1, Article No.28, 2023. https://doi.org/10.1007/s41871-023-00206-5
  17. [17] W. Gao et al., “Machine tool calibration: Measurement, modeling, and compensation of machine tool errors,” Int. J. Mach. Tools Manuf., Vol.187, Article No.104017, 2023. https://doi.org/10.1016/j.ijmachtools.2023.104017
  18. [18] H. Goto, S. Kagoya, M. Michihata, and S. Takahashi, “One-step measurement of micro-periodic structures from single diffraction image,” Opt. Technol. Meas. Ind. Appl. Conf. (Prof. SPIE, Vol.12607), Article No.1260708, 2023. https://doi.org/10.1117/12.3005530
  19. [19] H. Goto, S. Kadoya, M. Michihata, and S. Takahashi, “Batch measurement of micro-periodic structures by scanless tilt angle measurement method,” Proc. 2022 JSPE Autumn Conf., pp. 193-194, 2022 (in Japanese). https://doi.org/10.11522/pscjspe.2022A.0_193
  20. [20] G. Straube, J. S. F. Calderón, I. Ortlepp, R. Füßl, and E. Manske, “A heterodyne interferometer with separated beam paths for high-precision displacement and angular measurements,” Nanomanuf. Metrol., Vol.4, No.3, pp. 200-207, 2021. https://doi.org/10.1007/s41871-021-00101-x
  21. [21] G. Wu et al., “Synthetic wavelength interferometry of an optical frequency comb for absolute distance measurement,” Sci. Rep., Vol.8, No.1, Article No.4362, 2018. https://doi.org/10.1038/s41598-018-22838-0
  22. [22] S. Hyun, Y.-J. Kim, Y. Kim, and S.-W. Kim, “Absolute distance measurement using the frequency comb of a femtosecond laser,” CIRP Ann., Vol.59, No.1, pp. 555-558, 2010. https://doi.org/10.1016/j.cirp.2010.03.039
  23. [23] Q. Niu et al., “Improvement of distance measurement based on dispersive interferometry using femtosecond optical frequency comb,” Sensors, Vol.22, No.14, Article No.5403, 2022. https://doi.org/10.3390/s22145403
  24. [24] K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express, Vol.14, No.13, pp. 5954-5960, 2006. https://doi.org/10.1364/OE.14.005954
  25. [25] M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express, Vol.19, No.7, pp. 6549-6562, 2011. https://doi.org/10.1364/OE.19.006549
  26. [26] S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett., Vol.108, No.18, Article No.183901, 2012. https://doi.org/10.1103/PhysRevLett.108.183901
  27. [27] S. A. van den Berg, S. van Eldik, and N. Bhattacharya, “Mode-resolved frequency comb interferometry for high-accuracy long distance measurement,” Sci. Rep., Vol.5, No.1, Article No.14661, 2015. https://doi.org/10.1038/srep14661
  28. [28] G. Tang et al., “Absolute distance measurement based on spectral interferometry using femtosecond optical frequency comb,” Opt. Lasers Eng., Vol.120, pp. 71-78, 2019. https://doi.org/10.1016/j.optlaseng.2019.02.013
  29. [29] Y.-S. Jang et al., “Nanometric precision distance metrology via hybrid spectrally resolved and homodyne interferometry in a single soliton frequency microcomb,” Phys. Rev. Lett., Vol.126, No.2, Article No.023903, 2021. https://doi.org/10.1103/PhysRevLett.126.023903
  30. [30] T. Liu et al., “Improved algorithms of data processing for dispersive interferometry using a femtosecond laser,” Sensors, Vol.23, No.10, Article No.4953, 2023. https://doi.org/10.3390/s23104953
  31. [31] Y. Guan, S. Kadoya, M. Michihata, and S. Takahashi, “The FDTD analysis for dark field in-process depth measurements of fine microgrooves,” Meas.: Sens., Vol.18, Article No.100257, 2021. https://doi.org/10.1016/j.measen.2021.100257
  32. [32] S. Takahashi, C. Jin, S. Ye, M. Michihata, and K. Takamasu, “Theoretical analyses of in-process depth measurements of fine microgrooves based on near-field optical response,” CIRP Ann., Vol.66, No.1, pp. 503-506, 2017. https://doi.org/10.1016/j.cirp.2017.04.064
  33. [33] D. N. Qu, X. Yuan, and R. E. Burge, “Polarization dependence of the electromagnetic field distribution across wavelength-sized relief grating surfaces,” J. Opt. Soc. Am. A, Vol.10, No.11, pp. 2317-2323, 1993. https://doi.org/10.1364/JOSAA.10.002317
  34. [34] V. M. Tabie, M. O. Koranteng, A. Yunus, and F. Kuuyine, “Water-jet guided laser cutting technology—An overview,” Lasers Manuf. Mater. Process., Vol.6, No.2, pp. 189-203, 2019. https://doi.org/10.1007/s40516-019-00089-9
  35. [35] Y. Guan, S. Masui, S. Kadoya, M. Michihata, and S. Takahashi, “Optical depth measurement for microgrooves: A self-interferometry method based on near-field polarization analysis,” Proc. 9th Int. Conf. Asian Soc. Precis. Eng. Nanotechnol. (ASPEN2022), pp. 751-754, 2022.
  36. [36] D. Perrottet et al., “Particle-free semiconductor cutting using the water jet guided laser,” Photon Process. Microelectron. Photonics IV (Proc. SPIE, Vol.5713), pp. 240-246, 2005. https://doi.org/10.1117/12.585748
  37. [37] D. Sun, F. Han, and W. Ying, “The experimental investigation of water jet-guided laser cutting of CFRP,” Int. J. Adv. Manuf. Technol., Vol.102, Nos.1-4, pp. 719-729, 2019. https://doi.org/10.1007/s00170-018-03218-4
  38. [38] Y. Shi, Z. Jiang, J. Cao, and K. F. Ehmann, “Texturing of metallic surfaces for superhydrophobicity by water jet guided laser micro-machining,” Appl. Surf. Sci., Vol.500, Article No.144286, 2020. https://doi.org/10.1016/j.apsusc.2019.144286
  39. [39] S. Masuda, S. Kadoya, M. Michihata, and S. Takahashi, “Absolute distance measurement in water by optical comb for in-process measurement of water-guided laser processing,” Meas.: Sens., Vol.18, Article No.100221, 2021.
  40. [40] E. S. Buice et al., “Design evaluation of a single-axis precision controlled positioning stage,” Precis. Eng., Vol.33, No.4, pp. 418-424, 2009. https://doi.org/10.1016/j.precisioneng.2008.11.001
  41. [41] L. Zhao, H. Chen, Y. Yao, and G. Diao, “A new approach to improving the machining precision based on dynamic sensitivity analysis,” Int. J. Mach. Tools Manuf., Vol.102, pp. 9-21, 2016. https://doi.org/10.1016/j.ijmachtools.2015.11.008
  42. [42] L. Geppert, “Semiconductor lithography for the next millennium,” IEEE Spectr., Vol.33, No.4, pp. 33-38, 1996. https://doi.org/10.1109/6.486632
  43. [43] R. Miyashiro and Y. Fukagawa, “Optimization of alignment in semiconductor lithography equipment,” Precis. Eng., Vol.33, No.4, pp. 327-332, 2009. https://doi.org/10.1016/j.precisioneng.2008.09.001
  44. [44] L. M. Sanchez-Brea and T. Morlanes, “Metrological errors in optical encoders,” Meas. Sci. Technol., Vol.19, No.11, Article No.115104, 2008. https://doi.org/10.1088/0957-0233/19/11/115104
  45. [45] C.-J. Lin and S.-R. Yang, “Precise positioning of piezo-actuated stages using hysteresis-observer based control,” Mechatronics, Vol.16, No.7, pp. 417-426, 2006. https://doi.org/10.1016/j.mechatronics.2006.03.005
  46. [46] W. Gao, Y. Arai, A. Shibuya, S. Kiyono, and C. H. Park, “Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage,” Precis. Eng., Vol.30, No.1, pp. 96-103, 2006. https://doi.org/10.1016/j.precisioneng.2005.06.003
  47. [47] M. Uekita and Y. Takaya, “On-machine dimensional measurement of large parts by compensating for volumetric errors of machine tools,” Precis. Eng., Vol.43, pp. 200-210, 2016. https://doi.org/10.1016/j.precisioneng.2015.07.009
  48. [48] A. Kimura, W. Gao, Y. Arai, and Z. Lijiang, “Design and construction of a two-degree-of-freedom linear encoder for nanometric measurement of stage position and straightness,” Precis. Eng., Vol.34, No.1, pp. 145-155, 2010. https://doi.org/10.1016/j.precisioneng.2009.05.008
  49. [49] A. Kimura, W. Gao, and Z. Lijiang, “Position and out-of-straightness measurement of a precision linear air-bearing stage by using a two-degree-of-freedom linear encoder,” Meas. Sci. Technol., Vol.21, No.5, Article No.054005, 2010. https://doi.org/10.1088/0957-0233/21/5/054005
  50. [50] K. Hosono, W. Kim, A. Kimura, Y. Shimizu, and W. Gao, “Surface encoders for a mosaic scale grating,” Int. J. Automation Technol., Vol.5, No.2, pp. 91-96, 2011. https://doi.org/10.20965/ijat.2011.p0091
  51. [51] A. Kimura et al., “A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement,” Precis. Eng., Vol.36, No.4, pp. 576-585, 2012. https://doi.org/10.1016/j.precisioneng.2012.04.005
  52. [52] X. Li, W. Gao, H. Muto, Y. Shimizu, S. Ito, and S. Dian, “A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage,” Precis. Eng., Vol.37, No.3, pp. 771-781, 2013. https://doi.org/10.1016/j.precisioneng.2013.03.005
  53. [53] X. Li, Y. Shimizu, T. Ito, Y. Cai, S. Ito, and W. Gao, “Measurement of six-degree-of-freedom planar motions by using a multiprobe surface encoder,” Opt. Eng., Vol.53, No.12, Article No.122405, 2014. https://doi.org/10.1117/1.OE.53.12.122405
  54. [54] H. Matsukuma et al., “Reduction in cross-talk errors in a six-degree-of-freedom surface encoder,” Nanomanuf. Metrol., Vol.2, No.2, pp. 111-123, 2019. https://doi.org/10.1007/s41871-019-00039-1
  55. [55] Y. Hong, R. Sato, Y. Shimizu, H. Matsukuma, and W. Gao, “A new optical configuration for the surface encoder with an expanded Z-directional measuring range,” Sensors, Vol.22, No.8, Article No.3010, 2022. https://doi.org/10.3390/s22083010
  56. [56] Y. Hong et al., “Reduction of crosstalk errors in a surface encoder having a long Z-directional measuring range,” Sensors, Vol.22, No.23, Article No.9563, 2022. https://doi.org/10.3390/s22239563
  57. [57] Y. Shimizu et al., “An absolute surface encoder with a planar scale grating of variable periods,” Precis. Eng., Vol.67, pp. 36-47, 2021. https://doi.org/10.1016/j.precisioneng.2020.09.007
  58. [58] E. Nichelatti and G. Salvetti, “Spatial and spectral response of a Fabry–Perot interferometer illuminated by a Gaussian beam,” Appl. Opt., Vol.34, No.22, pp. 4703-4712, 1995. https://doi.org/10.1364/AO.34.004703
  59. [59] Y. Jiang, “High-resolution interrogation technique for fiber optic extrinsic Fabry–Perot interferometric sensors by the peak-to-peak method,” Appl. Opt., Vol.47, No.7, pp. 925-932, 2008. https://doi.org/10.1364/AO.47.000925
  60. [60] Y. Huang et al., “An extrinsic Fabry–Perot interferometer-based large strain sensor with high resolution,” Meas. Sci. Technol., Vol.21, No.10, Article No.105308, 2010. https://doi.org/10.1088/0957-0233/21/10/105308
  61. [61] C. Ma and A. Wang, “Signal processing of white-light interferometric low-finesse fiber-optic Fabry–Perot sensors,” Appl. Opt., Vol.52, No.2, pp. 127-138, 2013. https://doi.org/10.1364/AO.52.000127
  62. [62] D. W. Shin, H. Matsukuma, R. Sato, E. Manske, and W. Gao, “Improved peak-to-peak method for cavity length measurement of a Fabry-Perot etalon using a mode-locked femtosecond laser,” Opt. Express, Vol.31, No.16, pp. 25797-25814, 2023. https://doi.org/10.1364/OE.493507
  63. [63] S. Takahashi, Y. Kajihara, and K. Takamasu, “Submicrometer thickness layer fabrication for layer-by-layer microstereolithography using evanescent light,” CIRP Ann., Vol.61, No.1, pp. 219-222, 2012. https://doi.org/10.1016/j.cirp.2012.03.069
  64. [64] Y. Suzuki, H. Tahara, M. Michihata, K. Takamasu, and S. Takahashi, “Evanescent light exposing system under nitrogen purge for nano-stereolithography,” Procedia CIRP, Vol.42, pp. 77-80, 2016. https://doi.org/10.1016/j.procir.2016.02.192
  65. [65] D. Kong, M. Michihata, K. Takamasu, and S. Takahashi, “In-process measurement of gradient boundary of resin in evanescent-wave-based nano-stereolithography using reflection interference near critical angle,” J. Photopolym. Sci. Technol., Vol.31, No.3, pp. 441-446, 2018. https://doi.org/10.2494/photopolymer.31.441
  66. [66] D. Kong, M. Michihata, K. Takamasu, and S. Takahashi, “In-process measurement of thickness of cured resin in evanescent-wave-based nano-stereolithography using critical angle reflection,” Nanomanuf. Metrol., Vol.1, No.2, pp. 112-124, 2018. https://doi.org/10.1007/s41871-018-0013-z
  67. [67] S. Takahashi, D. Kong, M. Michihata, and K. Takamasu, “In-process measurement for cure depth control of nano stereolithography using evanescent light,” CIRP Ann., Vol.68, No.1, pp. 527-530, 2019. https://doi.org/10.1016/j.cirp.2019.04.072
  68. [68] E. J. Ambrose, “A surface contact microscope for the study of cell movements,” Nature, Vol.178, No.4543, p. 1194, 1956. https://doi.org/10.1038/1781194a0
  69. [69] P. Khajornrungruang, P. J. Dean, and S. V. Babu, “Study on dynamic observation of sub-50 nm sized particles in water using evanescent field with a compact and mobile apparatus,” Proc. ASPE 2014 Annu. Meet., pp. 73-77, 2014.
  70. [70] R. Nakajima, S. Takahashi, T. Miyoshi, and Y. Takaya, “Study on defects detection in near-surface layer of silicon wafer by using infrared evanescent light (1st report) – Theoretical, experimental discussions –,” J. Jpn. Soc. Precis. Eng., Vol.69, No.9, pp. 1291-1295, 2003 (in Japanese). https://doi.org/10.2493/jjspe.69.1291
  71. [71] P. Khajornrungruang et al., “Light scattering model for individual sub-100-nm particle size determination in an evanescent field,” Jpn. J. Appl. Phys., Vol.55, No.6S3, Article No.06JG02, 2016. https://doi.org/10.7567/JJAP.55.06JG02
  72. [72] K. Kimura, K. Suzuki, and P. Khajornrungruang, “Study on fine particle behavior in slurry flow between wafer and polishing pad as a material removal process in CMP,” Int. Conf. Plan./CMP Technol. (ICPT 2012), 2012.
  73. [73] Y. Terayama et al., “Real time nanoscale cleaning phenomenon observation during PVA brush scrubbing by evanescent field,” ECS Trans., Vol.92, No.2, pp. 191-198, 2019. https://doi.org/10.1149/09202.0191ecst
  74. [74] C. K. Ranaweera et al., “Real-time visualization of the cleaning of ceria particles from silicon dioxide films using PVA brush scrubbing,” ECS J. Solid State Sci. Technol., Vol.10, No.8, Article No.084004, 2021. https://doi.org/10.1149/2162-8777/ac1c55
  75. [75] T. Permpatdechakul, P. Khajornrungruang, K. Suzuki, and A. Baba, “Study on nanoscale observatory in polishing phenomena applying optical evanescent field – 2nd report: 4H-SiC Polishing with nano-silica abrasive,” Proc. 2021 JSPE Autumn Conf., pp. 102-103, 2021. https://doi.org/10.11522/pscjspe.2021A.0_102
  76. [76] M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Three-Dimens. Multidimens. Microsc.: Image Acquis. Proc. VII (Proc. SPIE, Vol.3919), pp. 141-150, 2000. https://doi.org/10.1117/12.384189
  77. [77] S. Usuki, H. Nishioka, S. Takahashi, and K. Takamasu, “Development of super-resolution optical inspection system for semiconductor defects using standing wave illumination shift,” Optomechatron. Sens. Instrum. Comput.-Vis. Syst. (Proc. SPIE, Vol.6375), Article No.637508, 2006. https://doi.org/10.1117/12.690582
  78. [78] R. Kudo, S. Usuki, S. Takahashi, and K. Takamasu, “Fundamental verification for 2-dimensional super-resolution optical inspection for semiconductor defects by using standing wave illumination shift,” Proc. 19th IMEKO World Congr. 2009 (IMEKO XIX), pp. 714-719, 2009.
  79. [79] S. Takahashi, R. Kudo, S. Usuki, and K. Takamasu, “Super resolution optical measurements of nanodefects on Si wafer surface using infrared standing evanescent wave,” CIRP Ann., Vol.60, No.1, pp. 523-526, 2011. https://doi.org/10.1016/j.cirp.2011.03.053
  80. [80] H. Kume, M. Michihata, and S. Takahashi, “Theoretical analysis on coherent optical super-resolution method for inspection of functional micro-structured surfaces with complex-amplitude-response distribution,” Precis. Eng., Vol.80, pp. 138-159, 2023. https://doi.org/10.1016/j.precisioneng.2022.11.011
  81. [81] Y. Guan, H. Kume, S. Kadoya, M. Michihata, and S. Takahashi, “The FDTD analysis of near-field response for microgroove structure with standing wave illumination for the realization of coherent structured illumination microscopy,” J. Manuf. Sci. Eng., Vol.144, No.3, Article No.031004, 2022. https://doi.org/10.1115/1.4051827
  82. [82] H. Nishioka, S. Takahashi, and K. Takamasu, “A super-resolution microscopy with standing evanescent light and image reconstruction method,” Proc. 18th IMEKO World Congr. (IMEKO XVIII), pp. 1210-1215, 2006.
  83. [83] E. Mudry et al., “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics, Vol.6, No.5, pp. 312-315, 2012. https://doi.org/10.1038/nphoton.2012.83
  84. [84] T. Ono, H. Kume, M. Michihata, K. Takamasu, and S. Takahashi, “The reconstruction process for blind structured illumination microscopy with deep learning,” Proc. 2019 JSPE Spring Conf., pp. 908-909, 2019 (in Japanese). https://doi.org/10.11522/pscjspe.2019S.0_908
  85. [85] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv:1412.6980, 2014. https://doi.org/10.48550/arXiv.1412.6980
  86. [86] A. Lucchi, Y. Li, and P. Fua, “Learning for structured prediction using approximate subgradient descent with working sets,” 2013 IEEE Conf. Comput. Vis. Pattern Recognit., pp. 1987-1994, 2013. https://doi.org/10.1109/CVPR.2013.259
  87. [87] Y. Guan, S. Masui, S. Kadoya, M. Michihata, and S. Takahashi, “Super-resolution imaging of sub-diffraction-limited pattern with superlens based on deep learning,” 15th Int. Symp. Meas. Technol. Intell. Instrum. (ISMTII 2023), A084, 2023.
  88. [88] C.-S. Kim and H. Yoo, “Three-dimensional confocal reflectance microscopy for surface metrology,” Meas. Sci. Technol., Vol.32, No.10, Article No.102002, 2021. https://doi.org/10.1088/1361-6501/ac04df
  89. [89] L.-C. Chen, “Confocal microscopy for surface profilometry,” W. Gao (Ed.), “Metrology,” pp. 59-92, Springer, 2019. https://doi.org/10.1007/978-981-10-4938-5_3
  90. [90] R. Sato et al., “Signal processing and artificial intelligence for dual-detection confocal probes,” Int. J. Precis. Eng. Manuf., Vol.25, No.1, pp. 199-223, 2024. https://doi.org/10.1007/s12541-023-00842-3
  91. [91] M. Minsky, “Microscopy apparatus,” U.S. Patent 3013467, 1962.
  92. [92] M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning, Vol.10, No.4, pp. 128-138, 1988. https://doi.org/10.1002/sca.4950100403
  93. [93] T. Wilson and C. Sheppard, “Theory and Practice of Scanning Optical Microscopy,” Academic Press, 1984.
  94. [94] M. Gu, “Principles of three-dimensional imaging in confocal microscopes,” World Scientific Publishing, Co. Pte. Ltd., 1996. https://doi.org/10.1142/3014
  95. [95] H. J. Tiziani and H.-M. Uhde, “Three-dimensional image sensing by chromatic confocal microscopy,” Appl. Opt., Vol.33, No.10, pp. 1838-1843, 1994. https://doi.org/10.1364/AO.33.001838
  96. [96] M. A. Browne, O. Akinyemi, and A. Boyde, “Confocal surface profiling utilizing chromatic aberration,” Scanning, Vol.14, No.3, pp. 145-153, 1992. https://doi.org/10.1002/sca.4950140304
  97. [97] J. Bai et al., “Three-probe error separation with chromatic confocal sensors for roundness measurement,” Nanomanuf. Metrol., Vol.4, No.4, pp. 247-255, 2021. https://doi.org/10.1007/s41871-021-00120-8
  98. [98] M. Pillarz, A. von Freyberg, D. Stöbener, and A. Fischer, “Gear shape measurement potential of laser triangulation and confocal-chromatic distance sensors,” Sensors, Vol.21, No.3, Article No.937, 2021. https://doi.org/10.3390/s21030937
  99. [99] L. Ye, J. Qian, H. Haitjema, and D. Reynaerts, “On-machine chromatic confocal measurement for micro-EDM drilling and milling,” Precis. Eng., Vol.76, pp. 110-123, 2022. https://doi.org/10.1016/j.precisioneng.2022.03.011
  100. [100] C. Liu, G. Lu, C. Liu, and D. Li, “Compact chromatic confocal sensor for displacement and thickness measurements,” Meas. Sci. Technol., Vol.34, No.5, Article No.055104, 2023. https://doi.org/10.1088/1361-6501/acb3ec
  101. [101] T. Mueller, M. Jordan, T. Schneider, A. Poesch, and E. Reithmeier, “Measurement of steep edges and undercuts in confocal microscopy,” Micron, Vol.84, pp. 79-95, 2016. https://doi.org/10.1016/j.micron.2016.03.001
  102. [102] K. Miura, A. Nose, H. Suzuki, and M. Okada, “Cutting tool edge and textured surface measurements with a point autofocus probe,” Int. J. Automation Technol., Vol.11, No.5, pp. 761-765, 2017. https://doi.org/10.20965/ijat.2017.p0761
  103. [103] K. Zangl, R. Danzl, F. Helmli, and M. Prantl, “Highly accurate optical µCMM for measurement of micro holes,” Procedia CIRP, Vol.75, pp. 397-402, 2018. https://doi.org/10.1016/j.procir.2018.05.098
  104. [104] K. Maruno, M. Michihata, Y. Mizutani, and Y. Takaya, “Fundamental study on novel on-machine measurement method of a cutting tool edge profile with a fluorescent confocal microscopy,” Int. J. Automation Technol., Vol.10, No.1, pp. 106-113, 2016. https://doi.org/10.20965/ijat.2016.p0106
  105. [105] Y. Takaya, K. Maruno, M. Michihata, and Y. Mizutani, “Measurement of a tool wear profile using confocal fluorescence microscopy of the cutting fluid layer,” CIRP Ann., Vol.65, No.1, pp. 467-470, 2016. https://doi.org/10.1016/j.cirp.2016.04.014
  106. [106] K. Matsumoto, Y. Mizutani, and Y. Takaya, “On-machine measurement of tool edge shape by using fluorescence of cutting fluid,” Proc. 13th Manuf. Mach. Tool Conf., Vol.13, Article No.D21, 2019. https://doi.org/10.1299/jsmemmt.2019.13.D21
  107. [107] M. Mikulewitsch, M. M. Auerswald, A. von Freyberg, and A. Fischer, “Geometry measurement of submerged metallic micro-parts using confocal fluorescence microscopy,” Nanomanuf. Metrol., Vol.1, No.3, pp. 171-179, 2018. https://doi.org/10.1007/s41871-018-0019-6
  108. [108] R. Sato, Y. Shimizu, H. Matsukuma, and W. Gao, “Influence of surface tilt angle on a chromatic confocal probe with a femtosecond laser,” Appl. Sci., Vol.12, No.9, Article No.4736, 2022. https://doi.org/10.3390/app12094736
  109. [109] R. Sato, Y. Shimizu, H. Shimizu, H. Matsukuma, and W. Gao, “Confocal probe based on the second harmonic generation for measurement of linear and angular displacements,” Opt. Express, Vol.31, No.7, pp. 11982-11993, 2023. https://doi.org/10.1364/OE.486421
  110. [110] M. Michihata, A. Fukui, K. Maruno, T. Hayashi, and Y. Takaya, “Fluorescence signal detection for optical micro-three dimensional measurement based on confocal microscopy,” Proc. 11th Symp. Laser Metrol. Precis. Meas. Insp. Ind. (LMPMI), pp. 123-126, 2014.
  111. [111] M. Michihata, A. Fukui, T. Hayashi, and Y. Takaya, “Sensing a vertical surface by measuring a fluorescence signal using a confocal optical system,” Meas. Sci. Technol., Vol.25, No.6, Article No.064004, 2014. https://doi.org/10.1088/0957-0233/25/6/064004
  112. [112] K. Kawami, S. Kadoya, M. Michihata, and S. Takahashi, “Autofluorescence signal detection from sidewall surface for 3-dimensional measurement,” 19th Int. Conf. Precis. Eng. (ICPE2022), C170, 2022.
  113. [113] X. Chen et al., “A chromatic confocal probe with a mode-locked femtosecond laser source,” Opt. Laser Technol., Vol.103, pp. 359-366, 2018. https://doi.org/10.1016/j.optlastec.2018.01.051
  114. [114] R. Sato, Y. Shimizu, H. Matsukuma, and W. Gao, “Profile measurement by using a femtosecond laser chromatic confocal probe,” Proc. JSME 2020 Conf. Lead. Edge Manuf./Mater. Process., Article No.V001T07A008, 2020. https://doi.org/10.1115/LEMP2020-8626
  115. [115] H. Matsukuma, R. Sato, Y. Shimizu, and W. Gao, “Measurement range expansion of chromatic confocal probe with supercontinuum light source,” Int. J. Automation Technol., Vol.15, No.4, pp. 529-536, 2021. https://doi.org/10.20965/ijat.2021.p0529
  116. [116] C. Chen, Y. Shimizu, R. Sato, H. Matsukuma, and W. Gao, “An off-axis differential method for improvement of a femtosecond laser differential chromatic confocal probe,” Appl. Sci., Vol.10, No.20, Article No.7235, 2020. https://doi.org/10.3390/app10207235
  117. [117] R. Sato, Y. Shimizu, C. Chen, H. Matsukuma, and W. Gao, “Investigation and improvement of thermal stability of a chromatic confocal probe with a mode-locked femtosecond laser source,” Appl. Sci., Vol.9, No.19, Article No.4084, 2019. https://doi.org/10.3390/app9194084
  118. [118] C. Chen et al., “A method for expansion of Z-directional measurement range in a mode-locked femtosecond laser chromatic confocal probe,” Appl. Sci., Vol.9, No.3, Article No.454, 2019. https://doi.org/10.3390/app9030454
  119. [119] R. Sato, C. Chen, H. Matsukuma, Y. Shimizu, and W. Gao, “A new signal processing method for a differential chromatic confocal probe with a mode-locked femtosecond laser,” Meas. Sci. Technol., Vol.31, No.9, Article No.094004, 2020. https://doi.org/10.1088/1361-6501/ab8905
  120. [120] M. Neisser, “International roadmap for devices and systems lithography roadmap,” J. Micro/Nanopatterning Mater. Metrol., Vol.20, No.4, Article No.044601, 2021. https://doi.org/10.1117/1.JMM.20.4.044601
  121. [121] A. Sofronov et al., “Optical detection of deeply subwavelength nanoparticles for silicon metrology,” Phys. Rev. Appl., Vol.15, No.6, Article No.064049, 2021. https://doi.org/10.1103/PhysRevApplied.15.064049
  122. [122] K. Tachibana, M. Michihata, S. Takahashi, and K. Takamasu, “High-sensitive optical measurement of fine particulate defects on Si wafer surface with liquid probe,” Proc. 8th Int. Conf. Lead. Edge Manuf. 21st Century (LEM21), Article No.1507, 2015. https://doi.org/10.1299/jsmelem.2015.8._1507-1_
  123. [123] K. Tachibana, M. Michihata, K. Takamasu, and S. Takahashi, “Smart optical measurement probe for autonomously detecting nano-defects on bare semiconductor wafer surface: Verification of proposed concept,” Precis. Eng., Vol.61, pp. 93-102, 2020. https://doi.org/10.1016/j.precisioneng.2019.09.019
  124. [124] C. Odagiri, S. Kadoya, M. Michihata, K. Takamasu, and S. Takahashi, “Optical detection of fine particulate defects with autonomous search-and-split liquid probe,” 18th Int. Conf. Precis. Eng. (ICPE 2020), D-1-4, 2020.
  125. [125] Y. Guan, S. Masui, S. Kadoya, M. Michihata, and S. Takahashi, “Smart optical measurement probe for autonomously detecting nano-defects on bare semiconductor wafer surface: Highly sensitive observation system using phase-contrast microscopy with a spatial light modulator,” J. Phys.: Conf. Ser., Vol.2368, Article No.012014, 2022. https://doi.org/10.1088/1742-6596/2368/1/012014
  126. [126] M. Michihata, S. Murakami, S. Kadoya, and S. Takahashi, “Measurement of diameter of sub-micrometer fiber based on analysis of scattered light intensity distribution under standing wave illumination,” CIRP Ann., Vol.71, No.1, pp. 421-424, 2022. https://doi.org/10.1016/j.cirp.2022.03.008
  127. [127] S. Murakami, M. Michihata, S. Kadoya, and S. Takahashi, “In-process diameter measurement technique for nano/micro-optical fiber with standing wave illumination – Evaluation of measurement performance,” Meas.: Sens., Vol.18, Article No.100185, 2021. https://doi.org/10.1016/j.measen.2021.100185
  128. [128] M. Michihata et al., “In-process diameter measurement technique for micro-optical fiber with standing wave illumination,” Nanomanuf. Metrol., Vol.4, No.1, pp. 28-36, 2021. https://doi.org/10.1007/s41871-020-00081-4
  129. [129] M. Michihata et al., “Surface imaging technique by an optically trapped microsphere in air condition,” Nanomanuf. Metrol., Vol.1, No.1, pp. 32-38, 2018. https://doi.org/10.1007/s41871-018-0004-0
  130. [130] S. Takushima et al., “Optical in-process height measurement system for process control of laser metal-wire deposition,” Precis. Eng., Vol.62, pp. 23-29, 2020. https://doi.org/10.1016/j.precisioneng.2019.11.007
  131. [131] Y. Mizutani, S. Kataoka, T. Uenohara, and Y. Takaya, “Ghost imaging with deep learning for position mapping of weakly scattered light source,” Nanomanuf. Metrol., Vol.4, No.1, pp. 37-45, 2021. https://doi.org/10.1007/s41871-020-00085-0
  132. [132] A. E. Ennos and M. S. Virdee, “High accuracy profile measurement of quasi-conical mirror surfaces by laser autocollimation,” Precis. Eng., Vol.4, No.1, pp. 5-8, 1982. https://doi.org/10.1016/0141-6359(82)90106-4
  133. [133] A. E. Ennos and M. S. Virdee, “Precision measurement of surface form by laser profilometry,” Wear, Vol.109, Nos.1-4, pp. 275-286, 1986. https://doi.org/10.1016/0043-1648(86)90271-1
  134. [134] C. R. Steinmetz, “Sub-micron position measurement and control on precision machine tools with laser interferometry,” Precis. Eng., Vol.12, No.1, pp. 12-24, 1990. https://doi.org/10.1016/0141-6359(90)90004-I
  135. [135] J. B. Bryan, “The Abbé principle revisited: An updated interpretation,” Precis. Eng., Vol.1, No.3, pp. 129-132, 1979. https://doi.org/10.1016/0141-6359(79)90037-0
  136. [136] R. Köning, J. Flügge, and H. Bosse, “A method for the in situ determination of Abbe errors and their correction,” Meas. Sci. Technol., Vol.18, No.2, pp. 476-481, 2007. https://doi.org/10.1088/0957-0233/18/2/S21
  137. [137] P. Yang et al., “Development of high-precision micro-coordinate measuring machine: Multi-probe measurement system for measuring yaw and straightness motion error of XY linear stage,” Precis. Eng., Vol.35, No.3, pp. 424-430, 2011. https://doi.org/10.1016/j.precisioneng.2011.01.004
  138. [138] C. Lee, G. H. Kim, and S.-K. Lee, “Design and construction of a single unit multi-function optical encoder for a six-degree-of-freedom motion error measurement in an ultraprecision linear stage,” Meas. Sci. Technol., Vol.22, No.10, Article No.105901, 2011. https://doi.org/10.1088/0957-0233/22/10/105901
  139. [139] K. C. Fan, M. J. Chen, and W. M. Huang, “A six-degree-of-freedom measurement system for the motion accuracy of linear stages,” Int. J. Mach. Tools Manuf., Vol.38, No.3, pp. 155-164, 1998. https://doi.org/10.1016/S0890-6955(97)00055-2
  140. [140] W. Gao, Y. Saito, H. Muto, Y. Arai, and Y. Shimizu, “A three-axis autocollimator for detection of angular error motions of a precision stage,” CIRP Ann., Vol.60, No.1, pp. 515-518, 2011. https://doi.org/10.1016/j.cirp.2011.03.052
  141. [141] P. S. Huang, S. Kiyono, and O. Kamada, “Angle measurement based on the internal-reflection effect: A new method,” Appl. Opt., Vol.31, No.28, pp. 6047-6055, 1992. https://doi.org/10.1364/AO.31.006047
  142. [142] C.-H. Liu, W.-Y. Jywe, and C.-K. Chen, “Development of a simple system for the simultaneous measurement of pitch, yaw and roll angular errors of a linear stage,” Int. J. Adv. Manuf. Technol., Vol.26, Nos.7-8, pp. 808-813, 2005. https://doi.org/10.1007/s00170-003-2041-z
  143. [143] J. Luo and W. Zhao, “Autocollimator for small angle measurement over long distance,” Proc. 27th Conf. Spacecr. TT&C Technol. China, pp. 263-271, 2014. https://doi.org/10.1007/978-3-662-44687-4_24
  144. [144] Y. Shimizu, T. Maruyama, S. Ito, and W. Gao, “A three-axis angle sensor with a linear encoder scale reflector,” Appl. Mech. Mater., Vol.870, pp. 141-146, 2017. https://doi.org/10.4028/www.scientific.net/AMM.870.141
  145. [145] Y. Saito, Y. Arai, and W. Gao, “Detection of three-axis angles by an optical sensor,” Sens. Actuators A: Phys., Vol.150, No.2, pp. 175-183, 2009. https://doi.org/10.1016/j.sna.2008.12.019
  146. [146] Y. Saito, Y. Arai, and W. Gao, “Investigation of an optical sensor for small tilt angle detection of a precision linear stage,” Meas. Sci. Technol., Vol.21, No.5, Article No.054006, 2010. https://doi.org/10.1088/0957-0233/21/5/054006
  147. [147] Y.-L. Chen, Y. Shimizu, Y. Kudo, S. Ito, and W. Gao, “Mode-locked laser autocollimator with an expanded measurement range,” Opt. Express, Vol.24, No.14, pp. 15554-15569, 2016. https://doi.org/10.1364/OE.24.015554
  148. [148] Y. Shimizu, Y. Kudo, Y.-L. Chen, S. Ito, and W. Gao, “An optical lever by using a mode-locked laser for angle measurement,” Precis. Eng., Vol.47, pp. 72-80, 2017. https://doi.org/10.1016/j.precisioneng.2016.07.006
  149. [149] Y.-L. Chen et al., “Optical frequency domain angle measurement in a femtosecond laser autocollimator,” Opt. Express, Vol.25, No.14, pp. 16725-16738, 2017. https://doi.org/10.1364/OE.25.016725
  150. [150] Y.-L. Chen et al., “Laser autocollimation based on an optical frequency comb for absolute angular position measurement,” Precis. Eng., Vol.54, pp. 284-293, 2018. https://doi.org/10.1016/j.precisioneng.2018.06.005
  151. [151] Y. Shimizu, K. Uehara, H. Matsukuma, and W. Gao, “Evaluation of the grating period based on laser diffraction by using a mode-locked femtosecond laser beam,” J. Adv. Mech. Des. Syst. Manuf., Vol.12, No.5, Article No.18-00173, 2018. https://doi.org/10.1299/jamdsm.2018jamdsm0097
  152. [152] Y. Shimizu et al., “Measurement of the apex angle of a small prism by an oblique-incidence mode-locked femtosecond laser autocollimator,” Precis. Eng., Vol.67, pp. 339-349, 2021. https://doi.org/10.1016/j.precisioneng.2020.10.013
  153. [153] S.-T. Lin, S.-L. Yeh, and Z.-F. Lin, “Angular probe based on using Fabry-Perot etalon and scanning technique,” Opt. Express, Vol.18, No.3, pp. 1794-1800, 2010. https://doi.org/10.1364/OE.18.001794
  154. [154] L. L. Sánchez-Soto, J. J. Monzón, and G. Leuchs, “The many facets of the Fabry–Perot,” Eur. J. Phys., Vol.37, No.6, Article No.064001, 2016. https://doi.org/10.1088/0143-0807/37/6/064001
  155. [155] J. L. Santos, A. P. Leite, and D. A. Jackson, “Optical fiber sensing with a low-finesse Fabry–Perot cavity,” Appl. Opt., Vol.31, No.34, pp. 7361-7366, 1992. https://doi.org/10.1364/AO.31.007361
  156. [156] D. W. Shin, H. Matsukuma, R. Sato, and W. Gao, “Fabry-Pérot angle sensor using a mode-locked femtosecond laser source,” Opt. Express, Vol.30, No.26, pp. 46366-46382, 2022. https://doi.org/10.1364/OE.477435
  157. [157] N. Ismail, C. C. Kores, D. Geskus, and M. Pollnau, “Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity,” Opt. Express, Vol.24, No.15, pp. 16366-16389, 2016. https://doi.org/10.1364/OE.24.016366
  158. [158] H. Matsukuma, S. Madokoro, W. D. Astuti, Y. Shimizu, and W. Gao, “A new optical angle measurement method based on second harmonic generation with a mode-locked femtosecond laser,” Nanomanuf. Metrol., Vol.2, No.4, pp. 187-198, 2019. https://doi.org/10.1007/s41871-019-00052-4
  159. [159] W. D. Astuti et al., “An optical frequency domain angle measurement method based on second harmonic generation,” Sensors, Vol.21, No.2, Article No.670, 2021. https://doi.org/10.3390/s21020670
  160. [160] K. Li, W. D. Astuti, R. Sato, H. Matsukuma, and W. Gao, “Theoretical investigation for angle measurement based on femtosecond maker fringe,” Appl. Sci., Vol.12, No.7, Article No.3702, 2022. https://doi.org/10.3390/app12073702
  161. [161] W. D. Astuti et al., “A second harmonic wave angle sensor with a collimated beam of femtosecond laser,” Appl. Sci., Vol.12, No.10, Article No.5211, 2022. https://doi.org/10.3390/app12105211
  162. [162] K. Li et al., “Investigation of angle measurement based on direct third harmonic generation in centrosymmetric crystals,” Appl. Sci., Vol.13, No.2, Article No.996, 2023. https://doi.org/10.3390/app13020996
  163. [163] M. Uekita and Y. Takaya, “Tool condition monitoring for form milling of large parts by combining spindle motor current and acoustic emission signals,” Int. J. Adv. Manuf. Technol., Vol.89, Nos.1-4, pp. 65-75, 2016. https://doi.org/10.1007/s00170-016-9082-6
  164. [164] M. Uekita and Y. Takaya, “Tool condition monitoring technique for deep-hole drilling of large components based on chatter identification in time-frequency domain,” Measurement, Vol.103, pp. 199-207, 2017. https://doi.org/10.1016/j.measurement.2017.02.035
  165. [165] A. Matsubara, “Measurement technologies for machine tools,” J. Jpn. Soc. Precis. Eng., Vol.83, No.3, pp. 191-194, 2017 (in Japanese). https://doi.org/10.2493/jjspe.83.191
  166. [166] B. Z. Balázs, N. Geier, M. Takács, and J. P. Davim, “A review on micro-milling: Recent advances and future trends,” Int. J. Adv. Manuf. Technol., Vol.112, Nos.3-4, pp. 655-684, 2021. https://doi.org/10.1007/s00170-020-06445-w
  167. [167] M. Kuntoğlu et al., “A review of indirect tool condition monitoring systems and decision-making methods in turning: Critical analysis and trends,” Sensors, Vol.21, No.1, Article No.108, 2020. https://doi.org/10.3390/s21010108
  168. [168] T. Mohanraj, S. Shankar, R. Rajasekar, N. R. Sakthivel, and A. Pramanik, “Tool condition monitoring techniques in milling process – A review,” J. Mater. Res. Technol., Vol.9, No.1, pp. 1032-1042, 2020. https://doi.org/10.1016/j.jmrt.2019.10.031
  169. [169] M. Yadi, Y. Morimoto, M. Ueki, and Y. Takaya, “In-plane vibration detection using sampling moiré method,” J. Phys.: Photonics, Vol.3, No.2, Article No.024005, 2021. https://doi.org/10.1088/2515-7647/abe4ab
  170. [170] G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett., Vol.56, No.9, pp. 930-933, 1986. https://doi.org/10.1103/PhysRevLett.56.930
  171. [171] Y.-L. Chen, Y. Xu, Y. Shimizu, H. Matsukuma, and W. Gao, “High quality-factor quartz tuning fork glass probe used in tapping mode atomic force microscopy for surface profile measurement,” Meas. Sci. Technol., Vol.29, No.6, Article No.065014, 2018. https://doi.org/10.1088/1361-6501/aab998
  172. [172] W. Gao, S. Goto, K. Hosobuchi, S. Ito, and Y. Shimizu, “A noncontact scanning electrostatic force microscope for surface profile measurement,” CIRP Ann., Vol.61, No.1, pp. 471-474, 2012. https://doi.org/10.1016/j.cirp.2012.03.097
  173. [173] P. Günther, U. C. Fischer, and K. Dransfeld, “Scanning near-field acoustic microscopy,” Appl. Phys. B, Vol.48, No.1, pp. 89-92, 1989. https://doi.org/10.1007/BF00694423
  174. [174] T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, “Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity,” J. Appl. Phys., Vol.69, No.2, pp. 668-673, 1991. https://doi.org/10.1063/1.347347
  175. [175] W. Gao, J. Aoki, B.-F. Ju, and S. Kiyono, “Surface profile measurement of a sinusoidal grid using an atomic force microscope on a diamond turning machine,” Precis. Eng., Vol.31, No.3, pp. 304-309, 2007. https://doi.org/10.1016/j.precisioneng.2007.01.003
  176. [176] S. Goto, K. Hosobuchi, and W. Gao, “An ultra-precision scanning tunneling microscope Z-scanner for surface profile measurement of large amplitude micro-structures,” Meas. Sci. Technol., Vol.22, No.8, Article No.085101, 2011. https://doi.org/10.1088/0957-0233/22/8/085101
  177. [177] W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng., Vol.27, No.3, pp. 289-298, 2003. https://doi.org/10.1016/S0141-6359(03)00028-X
  178. [178] F. Fang and F. Xu, “Recent advances in micro/nano-cutting: Effect of tool edge and material properties,” Nanomanuf. Metrol., Vol.1, No.1, pp. 4-31, 2018. https://doi.org/10.1007/s41871-018-0005-z
  179. [179] S. R. Patterson and E. B. Magrab, “Design and testing of a fast tool servo for diamond turning,” Precis. Eng., Vol.7, No.3, pp. 123-128, 1985. https://doi.org/10.1016/0141-6359(85)90030-3
  180. [180] Y. Okazaki, “A micro-positioning tool post using a piezoelectric actuator for diamond turning machines,” Precis. Eng., Vol.12, No.3, pp. 151-156, 1990. https://doi.org/10.1016/0141-6359(90)90087-F
  181. [181] Y. J. Noh, Y. Arai, M. Tano, and W. Gao, “Fabrication of large-area micro-lens arrays with fast tool control,” Int. J. Precis. Eng. Manuf., Vol.9, No.4, pp. 32-38, 2008.
  182. [182] K. W. Lee, Y. J. Noh, Y. Arai, Y. Shimizu, and W. Gao, “Precision measurement of micro-lens profile by using a force-controlled diamond cutting tool on an ultra-precision lathe,” Int. J. Precis. Technol., Vol.2, Nos.2-3, pp. 211-225, 2011. https://doi.org/10.1504/IJPTECH.2011.03946
  183. [183] W. Gao et al., “Precision tool setting for fabrication of a microstructure array,” CIRP Ann., Vol.62, No.1, pp. 523-526, 2013. https://doi.org/10.1016/j.cirp.2013.03.013
  184. [184] Y.-L. Chen et al., “Self-evaluation of the cutting edge contour of a microdiamond tool with a force sensor integrated fast tool servo on an ultra-precision lathe,” Int. J. Adv. Manuf. Technol., Vol.77, Nos.9-12, pp. 2257-2267, 2015. https://doi.org/10.1007/s00170-014-6580-2
  185. [185] Y.-L. Chen et al., “On-machine measurement of microtool wear and cutting edge chipping by using a diamond edge artifact,” Precis. Eng., Vol.43, pp. 462-467, 2016. https://doi.org/10.1016/j.precisioneng.2015.09.011
  186. [186] Y.-L. Chen et al., “An in-process measurement method for repair of defective microstructures by using a fast tool servo with a force sensor,” Precis. Eng., Vol.39, pp. 134-142, 2015. https://doi.org/10.1016/j.precisioneng.2014.08.001
  187. [187] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and prospects,” Science, Vol.349, No.6245, pp. 255-260, 2015. https://doi.org/10.1126/science.aaa8415
  188. [188] J. Lemley, S. Bazrafkan, and P. Corcoran, “Deep learning for consumer devices and services: Pushing the limits for machine learning, artificial intelligence, and computer vision,” IEEE Consum. Electron. Mag., Vol.6, No.2, pp. 48-56, 2017. https://doi.org/10.1109/MCE.2016.2640698
  189. [189] L. Deng and X. Li, “Machine learning paradigms for speech recognition: An overview,” IEEE Trans. Audio Speech Lang. Process., Vol.21, No.5, pp. 1060-1089, 2013. https://doi.org/10.1109/TASL.2013.2244083
  190. [190] D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the usages of deep learning for natural language processing,” IEEE Trans. Neural Netw. Learn. Syst., Vol.32, No.2, pp. 604-624, 2021. https://doi.org/10.1109/TNNLS.2020.2979670
  191. [191] S. Wang, W. Chaovalitwongse, and R. Babuska, “Machine learning algorithms in bipedal robot control,” IEEE Trans. Syst. Man Cybern., Part C (Appl. Rev.), Vol.42, No.5, pp. 728-743, 2012. https://doi.org/10.1109/TSMCC.2012.2186565
  192. [192] G. Litjens et al., “A survey on deep learning in medical image analysis,” Med. Image Anal., Vol.42, pp. 60-88, 2017. https://doi.org/10.1016/j.media.2017.07.005
  193. [193] H. Wang et al., “Deep learning enables cross-modality super-resolution in fluorescence microscopy,” Nat. Methods, Vol.16, No.1, pp. 103-110, 2019. https://doi.org/10.1038/s41592-018-0239-0
  194. [194] S. Liu et al., “Machine learning aided solution to the inverse problem in optical scatterometry,” Measurement, Vol.191, Article No.110811, 2022. https://doi.org/10.1016/j.measurement.2022.110811
  195. [195] J. Shi et al., “High-precision autocollimation method based on a multiscale convolution neural network for angle measurement,” Opt. Express, Vol.30, No.16, pp. 29821-29832, 2022. https://doi.org/10.1364/OE.467878
  196. [196] G. Ciaburro and G. Iannace, “Machine-learning-based methods for acoustic emission testing: A review,” Appl. Sci., Vol.12, No.20, Article No.10476, 2022. https://doi.org/10.3390/app122010476
  197. [197] J. Tejedor et al., “Machine learning methods for pipeline surveillance systems based on distributed acoustic sensing: A review,” Appl. Sci., Vol.7, No.8, Article No.841, 2017. https://doi.org/10.3390/app7080841
  198. [198] M. S. Alajmi and A. M. Almeshal, “Modeling of cutting force in the turning of AISI 4340 using Gaussian process regression algorithm,” Appl. Sci., Vol.11, No.9, Article No.4055, 2021. https://doi.org/10.3390/app11094055
  199. [199] L.-W. Tseng, T.-S. Hu, and Y.-C. Hu, “A smart tool holder calibrated by machine learning for measuring cutting force in fine turning and its application to the specific cutting force of low carbon steel S15C,” Machines, Vol.9, No.9, Article No.190, 2021. https://doi.org/10.3390/machines9090190
  200. [200] P. Charalampous, “Prediction of cutting forces in milling using machine learning algorithms and finite element analysis,” J. Mater. Eng. Perform., Vol.30, No.3, pp. 2002-2013, 2021. https://doi.org/10.1007/s11665-021-05507-8
  201. [201] V. F. C. Sousa et al., “Cutting forces assessment in CNC machining processes: A critical review,” Sensors, Vol.20, No.16, Article No.4536, 2020. https://doi.org/10.3390/s20164536
  202. [202] S. Bhopale, K. R. Jagatap, G. K. Lamdhade, and P. D. Darade, “Cutting forces during orthogonal machining process of AISI 1018 steel: Numerical and experimental modeling,” Mater. Today: Proc., Vol.4, No.8, pp. 8454-8462, 2017. https://doi.org/10.1016/j.matpr.2017.07.191
  203. [203] A. du Preez and G. A. Oosthuizen, “Machine learning in cutting processes as enabler for smart sustainable manufacturing,” Procedia Manuf., Vol.33, pp. 810-817, 2019. https://doi.org/10.1016/j.promfg.2019.04.102
  204. [204] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support vector machines,” IEEE Intell. Syst. Their Appl., Vol.13, No.4, pp. 18-28, 1998. https://doi.org/10.1109/5254.708428
  205. [205] M. Seeger, “Gaussian processes for machine learning,” Int. J. Neural Syst., Vol.14, No.2, pp. 69-106, 2004. https://doi.org/10.1142/S0129065704001899
  206. [206] D. Cica, B. Sredanovic, S. Tesic, and D. Kramar, “Predictive modeling of turning operations under different cooling/lubricating conditions for sustainable manufacturing with machine learning techniques,” Appl. Comput. Inform., Vol.20, Nos.1-2, pp. 162-180, 2024. https://doi.org/10.1016/j.aci.2020.02.001
  207. [207] Y. Zhang and X. Xu, “Machine learning cutting force, surface roughness, and tool life in high speed turning processes,” Manuf. Lett., Vol.29, pp. 84-89, 2021. https://doi.org/10.1016/j.mfglet.2021.07.005
  208. [208] Z. Jurkovic, G. Cukor, M. Brezocnik, and T. A. Brajkovic, “A comparison of machine learning methods for cutting parameters prediction in high speed turning process,” J. Intell. Manuf., Vol.29, No.8, pp. 1683-1693, 2018. https://doi.org/10.1007/s10845-016-1206-1
  209. [209] X. Xu, Y. Zhang, Y. Li, and Y. Li, “Machine learning cutting forces in milling processes of functionally graded materials,” Adv. Comput. Intell., Vol.2, No.3, Article No.25, 2022. https://doi.org/10.1007/s43674-022-00036-w
  210. [210] T. Irgolic, F. Cus, M. Paulic, and J. Balic, “Prediction of cutting forces with neural network by milling functionally graded material,” Procedia Eng., Vol.69, pp. 804-813, 2014. https://doi.org/10.1016/j.proeng.2014.03.057
  211. [211] J. Ma et al., “Tool wear mechanism and prediction in milling TC18 titanium alloy using deep learning,” Measurement, Vol.173, Article No.108554, 2021. https://doi.org/10.1016/j.measurement.2020.108554
  212. [212] D. Kong, Y. Chen, and N. Li, “Monitoring tool wear using wavelet package decomposition and a novel gravitational search algorithm–least square support vector machine model,” Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., Vol.234, No.3, pp. 822-836, 2020. https://doi.org/10.1177/0954406219887318
  213. [213] C. Xu, Y. Chai, H. Li, and Z. Shi, “Estimation the wear state of milling tools using a combined ensemble empirical mode decomposition and support vector machine method,” J. Adv. Mech. Des. Syst. Manuf., Vol.12, No.2, Article No.18-00166, 2018. https://doi.org/10.1299/jamsdsm.2018jamdsm0059
  214. [214] B. Pang, S.-J. Guo, J.-L. Wang, and H.-B. Li, “Real-time monitoring of tool wear in high-speed milling of aircraft structural parts,” 2019 Int. Conf. Qual. Reliab. Risk Maint. Saf. Eng., pp. 761-767, 2019. https://doi.org/10.1109/QR2MSE46217.2019.9021242
  215. [215] Y. Kim, T. Kim, B. D. Youn, and S.-H. Ahn, “Machining quality monitoring (MQM) in laser-assisted micro-milling of glass using cutting force signals: An image-based deep transfer learning,” J. Intell. Manuf., Vol.33, No.6, pp. 1813-1828, 2022. https://doi.org/10.1007/s10845-021-01764-5
  216. [216] G. Terrazas, G. Martínez-Arellano, P. Benardos, and S. Ratchev, “Online tool wear classification during dry machining using real time cutting force measurements and a CNN approach,” J. Manuf. Mater. Process., Vol.2, No.4, Article No.72, 2018. https://doi.org/10.3390/jmmp2040072

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Sep. 09, 2024