single-au.php

IJAT Vol.18 No.1 pp. 11-17
doi: 10.20965/ijat.2024.p0011
(2024)

Research Paper:

Diameter Measurement for Micro-Spheres via Coherent Scanning Interferometry with Reference to Gauge Block

Masaki Michihata ORCID Icon, Shotaro Kadoya, and Satoru Takahashi ORCID Icon

Department of Precision Engineering, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Corresponding author

Received:
April 24, 2023
Accepted:
September 7, 2023
Published:
January 5, 2024
Keywords:
micro-sphere, gauge block, coherent scanning interferometry, comparator principle, measurement uncertainty
Abstract

This paper describes a diameter measurement method for micro-spheres via coherent scanning interferometry (CSI) with a gauge block as the reference. The CSI system measures the height difference between the sphere and gauge block surface from both the front and back sides; then, the diameter is calculated from the measured heights via CSI and the gauge block length. For the glass sphere measured in this study, the diameter was found to be 270.556 µm with an uncertainty of 0.16 µm (k=2). Interestingly, by selecting a gauge block that matches the sphere diameter, the measurement uncertainty remained virtually unchanged, even for different sphere diameters; the proposed method achieved a relative uncertainty of 10-3–10-4. By utilizing the calibrated reference and the highly sensitive CSI system, and based on the comparator principle, the proposed method enables accurate diameter measurement without requiring specific measurement instruments.

Cite this article as:
M. Michihata, S. Kadoya, and S. Takahashi, “Diameter Measurement for Micro-Spheres via Coherent Scanning Interferometry with Reference to Gauge Block,” Int. J. Automation Technol., Vol.18 No.1, pp. 11-17, 2024.
Data files:
References
  1. [1] J. Claverley and R. Leach, “A review of the existing performance verification infrastructure for micro-CMMs,” Precision Engineering, Vol.39, pp. 1-15, 2015. https://doi.org/10.1016/j.precisioneng.2014.06.006
  2. [2] R. Su, Y. Wang, J. Coupland, and R. Leach, “On tilt and curvature dependent errors and the calibration of coherence scanning interferometry,” Optics Express, Vol.25, No.4, pp. 3297-3310, 2017. https://doi.org/10.1364/OE.25.003297
  3. [3] T. Takatsuji, M. Goto, S. Osawa, R. Yin, and T. Kurosawa, “Whole-viewing-angle cat’s-eye retroreflector as a target of laser trackers,” Measurement Science and Technology, Vol.10, No.7, N87-N90, 1999. https://dx.doi.org/10.1088/0957-0233/10/7/403
  4. [4] M. Michihata, “Surface-sensing principle of microprobe system for micro-scale coordinate metrology: A review,” Metrology, Vol.2, No.1, pp. 46-72, 2022. https://doi.org/10.3390/metrology2010004
  5. [5] J. Schwider and O. R. Falkenstoerfer, “Twyman-Green interferometer for testing microspheres,” Optical Engineering, Vol.34, No.10, pp. 2972-2975, 1995. https://doi.org/10.1117/12.210737
  6. [6] C. Ramirez and M. Strojnik, “Estimation of the degree of asphericity of a glass sphere using a vectorial shearing interferometer,” Optics Communications, Vol.284, Issue 6, pp. 1517-1525, 2011. https://doi.org/10.1016/j.optcom.2010.10.017
  7. [7] A. Küng, F. Meli, and R. Thalmann, “Ultraprecision micro-CMM using a low force 3D touch probe,” Measurement Science and Technology, Vol.18, No.2, pp. 319-327, 2007. https://doi.org/10.1088/0957-0233/18/2/S01
  8. [8] S. Ito, D. Tsutsumi, K. Kamiya, K. Matsumoto, and N. Kawasegi, “Measurement of form error of a probe tip ball for coordinate measuring machine (CMM) using a rotating reference sphere,” Precision Engineering, Vol.61, pp. 41-47, 2020. https://doi.org/10.1016/j.precisioneng.2019.09.017
  9. [9] W. Gao, S. Kiyono, and T. Nomura, “A new multiprobe method of roundness measurements,” Precision Engineering, Vol.19, Issue 1, pp. 37-45, 1996. https://doi.org/10.1016/0141-6359(96)00006-2
  10. [10] Y. Cai, B. Xie, S. Ling, and K. C. Fan, “On-line measurement method for diameter and roundness error of balls,” Nanomanufacturing and Metrology, Vol.3, Issue 3, pp. 218-227, 2020. https://doi.org/10.1007/s41871-020-00071-6
  11. [11] Y. Kondo, A. Hirai, and Y. Bitou, “Two-point diameter calibration of a sphere using a micro-coordinate measuring machine at NMIJ,” Metrologia, Vol.59, No.2, 024005, 2022. https://doi.org/10.1088/1681-7575/ac579e
  12. [12] J. Schaude, B. Baumgärtner, and T. Hausotte, “Bidirectional confocal measurement of a microsphere,” Applied Optics, Vol.60, No.28, pp. 8890-8895, 2021. https://doi.org/10.1364/AO.436355
  13. [13] Y. Kobayashi, M. Michihata, Z. Zheng, B. Chu, K. Takamasu, and S. Takahashi, “Radial mode number identification on whispering gallery mode resonances for diameter measurement of microsphere,” Measurement Science and Technology, Vol.30, No.6, 065201, 2019. https://doi.org/10.1088/1361-6501/ab1241
  14. [14] M. Michihata, T. Hayashi, A. Adachi, and Y. Takaya, “Measurement of stylus-probe sphere diameter for micro-CMM based on spectral fingerprint of whispering gallery mode,” CIRP Annals – Manufacturing Technology, Vol.63, No.1, pp. 469-472, 2014. https://doi.org/10.1016/j.cirp.2014.02.002
  15. [15] K. M. Medicus and M. Jansen, “Diameter measurement of small spheres on a white light interferometer including uncertainty analysis,” Proc. the 10th euspen Int. Conf., pp. 75-78, 2010.
  16. [16] C. Fang, O. Huang, J. Xu, R. Cheng, L. Chen, R. Li, C. Wang, and L. Zhang, “A measurement method of microsphere with dual scanning probes,” Applied Sciences, Vol.9, No.8, 1598, 2019. https://doi.org/10.3390/app9081598
  17. [17] E. Oertel and E. Manske, “Radius and roundness measurement of micro spheres based on a set of AFM surface scans,” Measurement Science and Technology, Vol.32, No.4, 044005, 2021. https://doi.org/10.1088/1361-6501/abcff4
  18. [18] P. de Groot, “Coherence Scanning Interferometry,” R. Leach (Ed.), “Optical Measurement of Surface Topography,” pp. 187-208, Springer, 2011. https://doi.org/10.1007/978-3-642-12012-1_9
  19. [19] K. Miura, A. Nose, H. Suzuki, and M. Okada, “Cutting tool edge and textured surface measurements with a point autofocus probe,” Int. J. Automation Technol., Vol.11, No.5, pp. 761-765, 2017. https://doi.org/10.20965/ijat.2017.p0761
  20. [20] P. de Groot and L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. of Modern Optics, Vol.42, No.2, pp. 389-401, 1995. https://doi.org/10.1080/09500349514550341
  21. [21] K. G. Larkin, “Efficient nonlinear algorithm for envelope detection in white light interferometry,” J. of the Optical Society of America A, Vol.13, No.4, pp. 832-843, 1996. https://doi.org/10.1364/JOSAA.13.000832
  22. [22] E. G. Thwaite, “Phase correction in the interferometric measurement of end standards,” Metrologia, Vol.14, No.2, 054002, 1978. https://doi.org/10.1088/0026-1394/14/2/002
  23. [23] P. de Groot, X. Colonna de Lega, and J. Liesener, “Model-based white light interference microscopy for metrology of transparent film stacks and optically-unresolved structures,” W. Osten and M. Kujawinska (Eds.), “Fringe 2009,” pp. 1-8, Springer, 2009. https://doi.org/10.1007/978-3-642-03051-2_40

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Feb. 19, 2024