single-au.php

IJAT Vol.17 No.2 pp. 144-155
doi: 10.20965/ijat.2023.p0144
(2023)

Research Paper:

Feasibility Study of Laser-Assisted Incremental Forming for Carbon Fiber Reinforced Thermo Plastic Based on 3D-CAD Data

Hidetake Tanaka*,†, Kippei Yamada*, and Tatsuki Ikari**

*Sophia University
7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan

Corresponding author

**National Defence Academy of Japan
Yokosuka, Japan

Received:
July 28, 2022
Accepted:
September 20, 2022
Published:
March 5, 2023
Keywords:
CFRP, incremental forming, CAD/CAM, 3D measurement, Taguchi method
Abstract

A three-dimensional (3D) printer can be used to form various shapes in a single process. However, shell shape formation is difficult because of the low adhesion strength between the layers in 3D printing, and sufficient stiffness cannot be maintained. Therefore, the authors focused on laser-assisted incremental forming, which enables the formation of shell shapes from sheet materials, and used carbon fiber reinforced thermo plastic (CFRTP) for the samples. In the study, a laser-assist incremental forming system based on 3D computer-aided design (CAD) data was developed. The system comprises computer-aided manufacturing (CAM) system, which generates a tool path based on CAD data and evaluates the formability between the CAD data and 3D-scanned data, including alignment compensation. The feasibility of the developed system was demonstrated through a set of forming experiments.

Cite this article as:
H. Tanaka, K. Yamada, and T. Ikari, “Feasibility Study of Laser-Assisted Incremental Forming for Carbon Fiber Reinforced Thermo Plastic Based on 3D-CAD Data,” Int. J. Automation Technol., Vol.17 No.2, pp. 144-155, 2023.
Data files:
References
  1. [1] B. Redwood, F. Schöffer, and B. Garret, “The 3D Printing Handbook: Technologies, design and applications,” 3D HUBS, 2017.
  2. [2] J. J. Park and Y. H. Kim, “Fundamental studies on the incremental sheet metal forming technique,” J. of Materials Processing Technology, Vol.140, Nos.1-3, pp. 447-453, 2003.
  3. [3] P. A. F. Martins, L. Kwiatkowski, V. Franzen, A. E. Tekkaya, and M. Kleiner, “Single point incremental forming of polymers,” CIRP Annals – Manufacturing Technology, Vol.58, No.1, pp. 229-232, 2009.
  4. [4] T. A. Marques, M. B. Silva, and P. A. F. Martins, “On the potential polymer parts,” Int. J. Adv. Manuf. Technol., Vol.60, No.1, pp. 75-86, 2012.
  5. [5] Z. Yang, F. Chen, and L. Chen, “A new method for joining of polymer sheet and open cell metal foam by thermal assisted incremental forming,” Int. J. Adv. Manuf. Technol., Vol.119, No.5, pp. 3659-3673, 2022.
  6. [6] G. Ambrogio, F. Gagliardi, R. Conte, and P. Russo, “Feasibility analysis of hot incremental sheet forming process on thermoplastics,” Int. J. Adv. Manuf. Technol., Vol.102, No.1, pp. 937-947, 2019.
  7. [7] S. L. Clavijo-Chaparro, J. Iturbe-Ek, L. M. Lozano-Sanchez, A. O. Sustaita, and A. Elias-Zuniga, “Plasticized and reinforced poly(methyl methacrylate) obtained by a dissolution-dispersion process for single point incremental forming: Enhanced formability towards the fabrication of cranial implants,” Polymer Testing, Vol.68, pp. 39-45, 2018.
  8. [8] V. Franzen, L. Kwiatkowski, P. A. F. Martins, and A. E. Tekkaya, “Single point incremental forming of PVC,” J. of Materials Processing Technology, Vol.209, Vol.1, pp. 462-469, 2009.
  9. [9] I. Bagudanch, M. L. Garcia-Romeu, G. Centenob, A. Elías-Zúñiga, and J. Ciurana, “Forming force and temperature effects on single point incremental forming of polyvinylchloride,” J. of Materials Processing Technology, Vol.219, pp. 221-229, 2015.
  10. [10] I. Bagudanch, M. L. Garcia-Romeu, and M. Sabater, “Incremental forming of polymers: process parameters selection from the perspective of electric energy consumption and cost,” J. of Cleaner Production, Vol.112, No.1, pp. 1013-1024, 2016.
  11. [11] R. Conte, G. Ambrogio, D. Pulice, F. Gagliardi, and L. Filice, “Incremental Sheet Forming of a Composite Made of Thermoplastic Matrix and Glass-Fiber Reinforcement,” Procedia Engineering, Vol.207, pp. 819-824, 2017.
  12. [12] Z. Liu, K. Cheng, and K. Peng, “Exploring the deformation potential of composite materials processed by incremental sheet forming: a review,” Int. J. Adv. Manuf. Technol., Vol.118, No.7, pp. 2099-2137, 2022.
  13. [13] K. Tanaka, T. Miura, M. Otsu, M. Okada, and H. Yoshimura, “Die Free Forming of PMMA Sheets by Lap Incremental Forming with Local Friction Heating,” Proc. of Japan Mechanical Engineering Congress, S0410204, 2018 (in Japanese).
  14. [14] M. Okada, T. Kato, M. Otsu, H. Tanaka, and T. Miura, “Development of optical-heating-assisted incremental forming method for carbon fiber reinforced thermoplastic sheet Forming characteristics in simple spot-forming and two-dimensional sheet-fed forming,” J. of Materials Processing Tech., Vol.256, pp. 145-153, 2018.
  15. [15] T. Ikari, H. Tanaka, and N. Asakawa, “Development of a novel shell shaping method with CFRTP: Forming experiment using localized heating in processing point,” Mater. Sci. Forum, Vol.874, pp. 40-45, 2016.
  16. [16] H. Tanaka, N. Asakawa, and M. Hirao, “Development of a Forging Type Rapid Prototyping System; Automation of a Free Forging and Metal Hammering Working,” J. Robot. Mechatron., Vol.17, No.5, pp. 523-528, 2005.
  17. [17] H. Tanaka, N. Asakawa, and M. Hirao, “Forming Type Rapid Prototyping Development – Error Compensation with Shape Measurement –,” Int. J. Automation Technol., Vol.2, No.6, pp. 462-467, 2008.
  18. [18] K. Takasugi, H. Tanaka, M. Jono, and N. Asakawa, “Development of a Forging Type Rapid Prototyping System (Relationship Between Hammering Direction and Product Shape),” Int. J. Automation Technol., Vol.6, No.1, pp. 38-45, 2012.
  19. [19] H. Tanaka, S. Naka, and N. Asakawa, “Development of CAM System Using Linear Servo Motor to Automate Metal Hammering – A Study on Forging-Type Rapid Prototyping System –,” Int. J. Automation Technol., Vol.6, No.5, pp. 604-610, 2012.
  20. [20] Kodatuno. http://www-mm.hm.t.kanazawa-u.ac.jp/research/kodatuno/index_e.html [Accessed July 27, 2022]
  21. [21] M. Bambach, A. B. Taleb, and G. Hirt, “Strategies to improve the geometric accuracy in asymmetric single point incremental forming,” Prod. Eng. Res. Devel., Vol.3, No.2, pp. 145-156, 2009.
  22. [22] G. S. Peace, “Taguchi methods: a hands-on approach Reading,” Addison-Wesley, 1993.
  23. [23] P. J. Besl and N. D. Mckay, “A Method for Registration of 3-D SHapes,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.14, No.2, pp. 239-256, 1992.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 22, 2024