single-au.php

IJAT Vol.15 No.4 pp. 388-395
doi: 10.20965/ijat.2021.p0388
(2021)

Paper:

Microstructure and Mechanical Properties of AlSi12CuNi Alloy Fabricated by Laser Powder Bed Fusion Process

Akihiro Hirayama*,†, Masaaki Kimura**, Masahiro Kusaka**, and Koichi Kaizu**

*Hyogo Prefectural Institute of Technology
3-1-12 Yukihira-cho, Suma-ku, Hyogo 654-0037, Japan

Corresponding author

**University of Hyogo, Himeji, Japan

Received:
December 24, 2020
Accepted:
March 15, 2021
Published:
July 5, 2021
Keywords:
laser powder bed fusion, AlSi12CuNi alloy, microstructure, mechanical property
Abstract

The microstructure and mechanical properties of the AlSi12CuNi alloy fabricated by the additive manufacturing technique, laser powder bed fusion (L-PBF), were investigated. Several laser irradiation conditions were examined to optimize the manufacturing process to obtain a high volume density of the fabricated alloy. Good fabricated samples with a relative density of 99% or higher were obtained with no cracks. The fabricated samples exhibited significantly good mechanical properties, such as ultimate tensile strength, breaking elongation, and micro-hardness, compared to the conventional die casting AlSi12CuNi alloy. Fine microstructures consisting of the α-Al phase and a nano-sized eutectic Al-Si network were observed. The dimensions of the microstructures were smaller than those of the conventional die-casting AlSi12CuNi alloy. The superior mechanical properties were attributed to the microstructure associated with the rapid solidification in the L-PBF process. Furthermore, the influence of the building direction on the mechanical properties of the fabricated samples was evaluated. The ultimate tensile strength and breaking elongation were significantly affected by the building direction; mechanical properties parallel to the roller moving direction were significantly better than those perpendicular to the roller moving direction. In conclusion, AlSi12CuNi alloys with good characteristics were successfully fabricated by the L-PBF process.

Cite this article as:
A. Hirayama, M. Kimura, M. Kusaka, and K. Kaizu, “Microstructure and Mechanical Properties of AlSi12CuNi Alloy Fabricated by Laser Powder Bed Fusion Process,” Int. J. Automation Technol., Vol.15 No.4, pp. 388-395, 2021.
Data files:
References
  1. [1] F. Calignano, D. Manfredi, E. P. Ambrosio, S. Biamino, M. Lombardi, E. Atzeni, A. Salmi, P. Minetola, L. Iuliano, and P. Fino, “Overview on Additive Manufacturing Technologies,” Proc. of the IEEE, Vol.105, No.4, pp. 593-612, 2017.
  2. [2] K. Egashira, T, Furumoto, K. Hishida, S. Abe, T. Koyano, and Y. Hashimoto, “Mechanism of Pores Inside Structure Fabricated by Metal-Based Additive Manufacturing,” Int. J. Automation Technol., Vol.13, No.3, pp. 330-337, 2019.
  3. [3] Y. Koizumi, A. Chiba, N. Nomura, and T. Nakano, “Fundamentals of Metal 3D Printing Technologies,” Materia Japan, Vol.56, No.12, pp. 686-690, 2017 (in Japanese).
  4. [4] N. Read, W. Wang, K. Essa, and M. M. Attallah, “Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development,” Mater. Des., Vol.65, pp. 417-424. 2015.
  5. [5] J. Suryawanshi, K. G. Prashanth, S. Scudino, J. Eckert, O. Prakash, and U. Ramamurty, “Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting,” Acta Mater., Vol.115, pp. 285-294, 2016.
  6. [6] W. Li, S. Li, J. Liu, A. Zhang, Y. Zhou, Q. Wei, C. Yan, and Y. Shi, “Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism,” Mater. Sci. Eng. A, Vol.663, pp. 116-125, 2016.
  7. [7] C. A. Biffi, J. Fiocchi, P. Bassani, D. S. Paolino, A. Tridello, G. Chiandussi, M. Rossetto, and A. Tuissi, “Microstructure and preliminary fatigue analysis on AlSi10Mg samples manufactured by SLM,” Proced. Struct. Integ., Vol.7, pp. 50-57, 2017.
  8. [8] N. Takata, H. Kodaira, K. Sekizawa, A. Suzuki, and M. Kobashi, “Microstructure and mechanical properties of Al-10Si-0.4Mg alloy fabricated by selective laser melting,” J. Jpn. Inst. Light Met., Vol.67, No.11, pp. 582-588, 2017 (in Japanese).
  9. [9] K. Kempen, L. Thijs, J. V. Humbeeck, and J. P. Kruth, “Mechanical properties of AlSi10Mg produced by Selective Laser Melting,” Phys. Proced., Vol.39, pp. 439-446, 2012.
  10. [10] X. P. Li, K. M. O’Donnell, and T. B. Sercombe, “Selective laser melting of Al-12Si alloy: Enhanced densification via powder drying,” Addit. Manuf., Vol.10, pp. 10-14, 2016.
  11. [11] M. Lorusso, F. Trevisan, F. Calignano, M. Lombardi, and D. Manfredi, “A357 Alloy by LPBF for Industry Applications,” Mater., Vol.13, No.7, 1488, 2020.
  12. [12] T. Kimura and T. Nakamoto, “Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting,” Mater. Des., Vol.89, pp. 1294-1301, 2016.
  13. [13] J. Fiocchi, C. A. Biffi, and A. Tuissi, “Selective laser melting of high-strength primary AlSi9Cu3 alloy: Processability, microstructure, and mechanical properties,” Mater. Des., Vol.191, 108581, 2020.
  14. [14] E. A. Ashrafi, A. Hasan, and H. Rashed, “Effect of Cu in Al-Si Alloys with Phase Modelling,” Proc. of the Int. Conf. on Mechanical, Industrial and Materials Engineering 2013 (ICMIME2013), 2013.
  15. [15] H. M. M. Prieto, C. G. G. Reyes, C. D. G. Esparza, J. A. Santillan, M. C. M. Orozco, and R. M. Sanchez, “Evolution of Microstructure in Al-Si-Cu System Modified with a Trans. Element Addition and its Effect on Hardness,” Mat. Res., Vol.19, pp. 59-66, 2016.
  16. [16] N. T. Aboulkhair, N. M. Everitt, I. Ashcroft, and C. Tuck, “Reducing porosity in AlSi10Mg parts processed by selective laser melting,” Addit. Manuf., Vol.1-4, pp. 77-86, 2014.
  17. [17] S. Vock, B. Kloden, A. Kirchner, T. Weisgarber, and B. Kieback, “Powders for powder bed fusion: a review,” Prog. Addit. Manuf., Vol.4, pp. 383-397, 2019.
  18. [18] H. Bikas, P. Stavropoulos, and G. Chryssolouris, “Additive manufacturing methods and modelling approaches: a critical review,” Int. J. Adv. Manuf. Technol., Vol.83, pp. 389-405, 2016.
  19. [19] Y. Zhang, L. Wu, X. Guo, S. Kane, Y. Deng, Y. G. Jung, J. H. Lee, and J. Zhang, “Additive manufacturing of metallic materials: A review,” J. Mater. Eng. Perform., Vol.27, pp. 1-13, 2018.
  20. [20] J. Potgieter, O. Diegel, F. Noble, and M. Pike, “Additive manufacturing in the context of hybrid flexible manufacturing systems,” Int. J. Automation Technol., Vol.6, No.5, pp. 627-632, 2012.
  21. [21] H. Kyogoku and T.-T. Ikeshoji, “A Review of metal additive manufacturing technologies: Mechanism of defects formation and simulation of melting and solidification phenomena in laser powder bed fusion process,” Mech. Eng. Rev., Vol.7, No.1, 19-00182, 2019.
  22. [22] M. Kimura, A. Hirayama, J. Yoshioka, H. Maekawa, M. Kusaka, K. Kaizu, and T. Takahashi, “Mechanical properties of AlSi12 alloy manufactured by laser powder bed fusion technique,” J. Fail. Anal. Preven., Vol.20, No.6, pp. 1884-1895, 2020.
  23. [23] R. Chou, A. Ghosh, S. C. Chou, M. Paliwal, and M. Brochu, “Microstructure and mechanical properties of Al10SiMg fabricated by pulsed laser powder bed fusion,” Mater. Sci. Eng. A, Vol.689, pp. 53-62, 2017.
  24. [24] T. Kimura and T. Nakamoto, “Thermal and mechanical properties of commercial-purity aluminum fabricated using selective laser melting,” J. Jpn. Inst. Light Met., Vol.66, No.4, pp. 167-173, 2016 (in Japanese).
  25. [25] L. F. Wang, J. Sun, X. L. Yu, Y. Shi, X. G. Zhu, L. Y. Cheng, H. H. Liang, B. Yan, and L. J. Guo, “Enhancement in mechanical properties of selectively laser-melted AlSi10Mg aluminum alloys by T6-like heat treatment,” Mater. Sci. Eng. A, Vol.734, pp. 299-310, 2018.
  26. [26] S. Catchpole-Smith, N. Aboulkhair, L. Parry, C. Tuck, I. A. Ashcroft, and A. Clare, “Fractal scan strategies for selective laser melting of ‘unweldable’ nickel superalloys,” Addit. Manuf., Vol.15, pp. 113-122, 2017.
  27. [27] J. P. Choi, G. H. Shin, M. Brochu, Y. J. Kim, S. S. Yang, K. T. Kim, D. Y. Yang, C. W. Lee, and J. H. Yu, “Densification Behavior of 316L Stainless Steel Parts Fabricated by Selective Laser Melting by Variation in Laser Energy Density,” Mater. Trans., Vol.57, No.11, pp. 1952-1959, 2016.
  28. [28] M. Z. Arredondo, T. London, M. Allen, T. Maccio, S. Ward, D. Griffiths, A. Allison, P. Goodwin, and C. Hauser, “Use of power factor and specific point energy as design parameters in laser powder-bed-fusion (L-PBF) of AlSi10Mg alloy,” Mater. Des., Vol.182, No.15, 108018, 2019.
  29. [29] N. Kaufmann, M. Imran, T. M. Wischeropp, C. Emmelmann, S. Siddique, and F. Walther, “Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM),” Phys. Proced., Vol.83, pp. 918-926, 2016.
  30. [30] A. H. Maamoun, Y. F. Xue, M. A. Elbestawi, and S. C. Veldhuis, “Effect of Selective Laser Melting Process Parameters on the Quality of Al Alloy Parts: Powder Characterization, Density, Surface Roughness, and Dimensional Accuracy,” Mater., Vol.11, 2343, 2018.
  31. [31] Z. Hu, H. Zhu, H. Zhang, and X. Zeng, “Experimental investigation on selective laser melting of 17-4PH stainless steel,” Opt. Laser Technol., Vol.87, pp. 17-25, 2017.
  32. [32] Z. Li, B. Q. Li, P. Bai, B. Liu, and Y. Wang, “Research on the Thermal Behaviour of a Selectively Laser Melted Aluminium Alloy: Simulation and Experiment,” Mater., Vol.11, Issue 7, 1172, 2018.
  33. [33] X. P. Li, X. J. Wang, M. Saunders, A. Suvorova, L. C. Zhang, Y. J. Liu, M. H. Fang, Z. H. Huang, and T. B. Sercombe, “A selective laser melting and solution heat treatment refined Al-12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility,” Acta Mater., Vol.95, pp. 74-82, 2015.
  34. [34] N. T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, and N. M. Everitt, “Improving the fatigue behaviour of a selectively laser melted aluminium alloy: Influence of heat treatment and surface quality,” Mater. Des., Vol.104, pp. 174-182, 2016.
  35. [35] M. Fousova, D. Dvorsky, M. Vronka, D. Vojtech, and P. Lejcek, “The Use of Selective Laser Melting to Increase the Performance of AlSi9Cu3Fe Alloy,” Mater., Vol.11, Issue 10, 1918, 2018.
  36. [36] S. Kajino and T. Okane, “Mechanical properties of aluminum alloy plate produced by combined process of selective laser melting and rolling process,” J. Jpn. Foundry Eng. Soc., Vol.91, No.9, pp. 623-626, 2019 (in Japanese).
  37. [37] K. G. Prashanth, K. Sri, and E. Jurgen, “Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting-Selection Guidelines,” Mater., Vol.10, 672, 2017.
  38. [38] P. Vora, K. Mumtaz, I. Todd, and N. Hopkinson, “AlSi12 in-situ alloy formation and residual stress reduction using anchorless selective laser melting,” Addit. Manuf., Vol.7, pp. 12-19, 2015.
  39. [39] K. G. Prashanth, S. Scudino, H. J. Klauss, K. B. Surreddi, L. Lober, Z. Wang, A. K. Chaubey, U. Kuhn, and J. Eckert, “Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment,” Mater. Sci. Eng. A, Vol.590, pp. 153-160, 2014.
  40. [40] S. Siddique, M. Imran, E. Wycisk, C. Emmelmann, and F. Walther, “Influence of process-induced microstructure and imperfections on mechanical properties of AlSi12 processed by selective laser melting,” J. Mater. Process. Technol., Vol.221, pp. 205-213, 2015.
  41. [41] Z. H. Xiong, S. L. Liu, S. F. Li, Y. Shi, Y. F. Yang, and R. D. K. Misra, “Role of melt pool boundary condition in determining the mechanical properties of selective laser melting AlSi10Mg alloy,” Mater. Sci. Eng. A, Vol.740-741, pp. 148-156, 2019.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 19, 2024