IJAT Vol.14 No.4 pp. 560-567
doi: 10.20965/ijat.2020.p0560

Technical Paper:

A Novel Platform for Smart 3D Manufacturing System

Gianluca Melis*1,†, Paolo Sirianni*2, Andrea Porceddu*2, Massimiliano Messere*2, Michele Perlo*3, Luca Orbech*3, Stefano Mauro*4, Matteo Gaidano*4, Leonardo Sabatino Scimmi*4, Matteo Melchiorre*4, Francesco Perrucci*1, and Luciano Scaltrito*1

*1Department of Applied Science and Technology, Polytechnic University of Turin
Corso Duca degli Abruzzi, 24, Turin 10129, Italy

Corresponding author

*2Microla Optoelectronics S.r.l., Chivasso, Italy

*3Cemas Elettra S.r.l., Carmagnola, Italy

*4Department of Mechanical and Aerospace Engineering, Polytechnic University of Turin, Turin, Italy

December 20, 2019
April 6, 2020
July 5, 2020
micro-/nano-fabrication, surface treatment, additive manufacturing, laser based manufacturing

The proposed paper is about the development of an integrated manufacturing process for smart 3D polymeric components, with electronics embedded, developed in the framework of research collaboration between the university partner and a group of SME. The system will be able to produce a polymeric structure by additive manufacturing technique, whereas a robotic system is integrated in the line to assemble electronic components onto the part while the manufacturing process goes on. A laser engraving station will process the component, providing micro- and nano-surface structuring, microcutting and microdrilling. Finally, another laser source is integrated in the system to weld electronic parts and circuits within the manufactured component. At the same time, the assembly of large size systems by welding small size components is allowed, and also a sealed atmosphere is ensured by welding a plastic cap onto the plastic structure.

Cite this article as:
G. Melis, P. Sirianni, A. Porceddu, M. Messere, M. Perlo, L. Orbech, S. Mauro, M. Gaidano, L. Scimmi, M. Melchiorre, F. Perrucci, and L. Scaltrito, “A Novel Platform for Smart 3D Manufacturing System,” Int. J. Automation Technol., Vol.14, No.4, pp. 560-567, 2020.
Data files:
  1. [1] H. Suzuki and K. Ohashi, “Special Issue on Advanced Abrasive Process Technologies,” Int. J. Automation Technol., Vol.13, No.6, p. 721, 2019.
  2. [2] H. Hibino and M. Nakano, “Mini Special Issue on Smart Manufacturing,” Int. J. Automation Technol., Vol.11, No.1, p. 3, 2017.
  3. [3] K. Yamada, K. Ohashi, T. Ishida, and T. Sugino, “Special Issue on Progress of Manufacturing Technology,” Int. J. Automation Technol., Vol.12, No.5, p. 679, 2018.
  4. [4] T. Matsumura, “Special Issue on Advanced Cutting Science and Technologies,” Int. J. Automation Technol., Vol.13, No.1, p. 5, 2019.
  5. [5] Y. Nakao and H. Yoshioka, “Special Issue on the Latest Machine Tool Technologies and Manufacturing Processes,” Int. J. Automation Technol., Vol.13, No.5, p. 573, 2019.
  6. [6] M. H. Ang Jr., “Special Issue on Mechatronics,” Int. J. Automation Technol., Vol.5, No.6, p. 891, 2011.
  7. [7] S. Kanai and J. Verlinden, “Special Issue on Augmented Prototyping and Fabrication for Advanced Product Design and Manufacturing,” Int. J. Automation Technol., Vol.13, No.4, pp. 451-452, 2019.
  8. [8] B. Resta, S. Dotti, P. Gaiardelli, and A. Boffelli, “How Lean Manufacturing Affects the Creation of Sustainable Value: An Integrated Model,” Int. J. Automation Technol., Vol.11, No.4, pp. 542-551, 2017.
  9. [9] T. Noritsugu, “Special Issue on Robotics for Innovative Industry and Society,” Int. J. Automation Technol., Vol.8, No.2, p. 139, 2014.
  10. [10] F. Catania, L. Scaltrito, P. Sirianni, M. Messere, M. Cocuzza, S. Marasso, F. Perrucci, C. F. Pirri, and S. Ferrero, “Hollow core waveguide for simultaneous laser plastic welding,” Proc. of Lasers in Manufacturing Conf. 2017 (LiM), Munich, June 26-29, pp. 1-7, 2017.
  11. [11] S. Katayama, “Special Issue on Progress in Welding Processes,” Int. J. Automation Technol., Vol.7, No.1, p. 87, 2013.
  12. [12] T. Arai, “Technical Review of Laser Materials Processing in Japan,” Int. J. Automation Technol., Vol.10, No.6, pp. 854-862, 2016.
  13. [13] T. Niioka and Y. Hanada, “Surface Microfabrication of Conventional Glass Using Femtosecond Laser for Microfluidic Applications,” Int. J. Automation Technol., Vol.11, No.6, pp. 878-882, 2017.
  14. [14] A. Matsushita, M. Yamanaka, S. Kaneko, H. Ohfuji, and K. Fukuda, “Basic Image Measurement for Laser Welding Robot Motion Control,” Int. J. Automation Technol., Vol.3, No.2, pp. 136-143, 2009.
  15. [15] S. Xu, S. Osawa, R. Kobayashi, K. Shimada, M. Mizutani, and T. Kuriyagawa, “Minimizing Burrs and Defects on Microstructures with Laser Assisted Micromachining Technology,” Int. J. Automation Technol., Vol.10, No.6, pp. 891-898, 2016.
  16. [16] H. Hidai and K. Yamada, “Special Issue on Laser Machining,” Int. J. Automation Technol., Vol.10, No.6, p. 853, 2016.
  17. [17] V. Bertana, F. Catania, M. Cocuzza, S. Ferrero, L. Scaltrito, and C. F. Pirri, “Medical and biomedical applications of 3D and 4D printed polymer nanocomposites,” K. K. Sadasivuni, K. Deshmukh, and M. A. AlMaadeed (Eds.), “3D and 4D Printing of Polymer Nanocomposite Materials: Processes, Applications, and Challenges (1st Edition),” pp. 325-366, 2019.
  18. [18] G. Scordo, V. Bertana, L. Scaltrito, S. Ferrero, M. Cocuzza, S. L. Marasso, S. Romano, R. Sesana, F. Catania, and C. F. Pirri, “A novel highly electrically conductive composite resin for stereolithography,” Materials Today Communications, Vol.19, pp. 12-17, 2019.
  19. [19] V. Bertana, G. D. Pasquale, S. Ferrero, L. Scaltrito, F. Catania, C. Nicosia, S. L. Marasso, M. Cocuzza, and F. Perrucci, “3D Printing with the Commercial UV-Curable Standard Blend Resin: Optimized Process Parameters towards the Fabrication of Tiny Functional Parts,” Polymers, Vol.11, No.2, p. 292, 2019.
  20. [20] J. Potgieter, O. Diegel, F. Noble, and M. Pike, “Additive Manufacturing in the Context of Hybrid Flexible Manufacturing Systems,” Int. J. Automation Technol., Vol.6, No.5, pp. 627-632, 2012.
  21. [21] S. Wang, R. Badarinath, E. Lehtihet, and V. Prabhu, “Evaluation of Additive Manufacturing Processes in Fabrication of Personalized Robot,” Int. J. Automation Technol., Vol.11, No.1, pp. 29-37, 2017.
  22. [22] A. V. Kulkarni, J. S. Jagtap, and V. K. Harpale, “Object recognition with ORB and its Implementation on FPGA,” Int. J. of Advanced Computer Research, Vol.3, No.3, pp. 164-169, 2013.
  23. [23] V. Bertana, C. Potrich, G. Scordo, L. Scaltrito, S. Ferrero, A. Lamberti, F. Perrucci, C. F. Pirri, C. Pederzolli, M. Cocuzza, and S. L. Marasso, “3D-printed microfluidics on thin poly(methyl methacrylate) substrates for genetic applications,” J. of Vacuum Science and Technology B, Vol.36, No.1, 01A106, 2018.
  24. [24] K. Morishige, M. Anzai, and H. Narahara, “Special Issue on Rapid Prototyping,” Int. J. Automation Technol., Vol.6, No.5, p. 569, 2012.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Dec. 01, 2020