single-au.php

IJAT Vol.14 No.4 pp. 546-551
doi: 10.20965/ijat.2020.p0546
(2020)

Paper:

Fabrication of a Two-Dimensional Diffraction Grating with Isolated Photoresist Pattern Structures

Hiraku Matsukuma, Masanori Matsunaga, Kai Zhang, Yuki Shimizu, and Wei Gao

Department of Finemechanics, Tohoku University
6-6-01 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan

Corresponding author

Received:
January 30, 2020
Accepted:
March 27, 2020
Published:
July 5, 2020
Keywords:
mask-less interference lithography, non-orthogonal two-axis Lloyd’s mirror interferometer, two-dimensional diffraction grating, isolated photoresist pattern structures
Abstract

This paper presents a fabrication method of a two-dimensional (2D) diffraction grating with isolated photoresist pattern structures in order to reduce fluctuation in the grating pitch due to the thermal expansion. At first, theoretical calculations for the fabrication of a 2D diffraction grating with isolated photoresist pattern structures are carried out to estimate the influences of exposure and development time on the pattern structures to be fabricated through the pattern exposure and development process. A diode laser-based compact non-orthogonal two-axis Lloyd’s mirror interferometer system designed in a size of 500 mm × 840 mm is then built on a breadboard for stable mask-less interference lithography. Basic performances of the newly developed compact interferometer system are evaluated through the fabrication of 2D diffraction gratings to demonstrate the feasibility of the theoretical calculations and the developed lithography system.

Cite this article as:
H. Matsukuma, M. Matsunaga, K. Zhang, Y. Shimizu, and W. Gao, “Fabrication of a Two-Dimensional Diffraction Grating with Isolated Photoresist Pattern Structures,” Int. J. Automation Technol., Vol.14, No.4, pp. 546-551, 2020.
Data files:
References
  1. [1] A. Yariv and P. Yeh, “Photonics: optical electronics in modern communications (6th Ed.),” Oxford University Press, 2006.
  2. [2] W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann., Vol.64, Issue 2, pp. 773-796, 2015.
  3. [3] T. P. Softley, “Atomic Spectra,” Oxford University Press, 1994.
  4. [4] C. H. Townes and A. L. Schawlow, “Microwave Spectroscopy,” Dover Publications, 2012.
  5. [5] A. Dalgarno and D. Layzer, “Spectroscopy of Astrophysical Plasmas,” Cambridge University Press, 2008.
  6. [6] W. Gao, H. Haitjema, F. Z. Fang, R. K. Leach, C. F. Cheung, E. Savio, and J. M. Linares, “On-machine and in-process surface metrology for precision manufacturing,” CIRP Annals, Vol.68, Issue 2, pp. 843-866, 2019.
  7. [7] L. A. Sayce, “Gratings in metrology,” J. Phys. E: Sci. Instrum., Vol.5, pp. 193-198, 1972.
  8. [8] H. Schwenke, U. Neuschaefer-Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” CIRP Ann. Manuf. Technol., Vol.51, Issue 2, pp. 685-699, 2002.
  9. [9] Y. S. Jang and S. W. Kim, “Distance measurements using mode-locked lasers: A review,” Nanomanuf. Metrol., Vol.1, pp. 131-147, 2018.
  10. [10] K. C. Fan, R. J. Li, and P. Xu, “Design and verification of micro/nano-probes for coordinate measuring machines,” Nanomanuf. Metrol., Vol.2, pp. 1-15, 2019.
  11. [11] W. Gao, “Precision Nanometrology – Sensors and Measuring Systems for Nanomanufacturing,” Springer, 2010.
  12. [12] W. Gao (Ed.), “Metrology,” Springer, 2019.
  13. [13] K. Hosono, W. J. Kim, A. Kimura, Y. Shimizu, and W. Gao, “Surface encoders for a mosaic scale grating,” Int. J. Automation Technol., Vol.5, No.2, pp. 91-96, 2011.
  14. [14] X. Li, W. Gao, H. Muto, Y. Shimizu, S. Ito, and S. Dian, “A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage,” Precis. Eng., Vol.37, Issue 3, pp. 771-781, 2013.
  15. [15] H. Matsukuma, R. Ishizuka, M. Furuta, X. Li, Y. Shimizu, and W. Gao, “Reduction in cross-talk errors in a six-degree-of-freedom surface encoder,” Nanomanuf. Metrol., Vol.2, pp. 111-123, 2019.
  16. [16] W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng., Vol.27, Issue 3, pp. 289-298, 2003.
  17. [17] G. R. Harrison, “The production of diffraction gratings I. development of the ruling art,” J. Opt. Soc. Am., Vol.39, Issue 6, pp. 413-426, 1949.
  18. [18] L. Stuerzebecher, F. Fuchs, U. D. Zeitner, and A. Tuennermann, “High-resolution proximity lithography for nano-optical components,” Microelectron. Eng., Vol.132, pp. 120-134, 2015.
  19. [19] J. A. Rogers, K. E. Paul, R. J. Jackman, and G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett., Vol.70, Issue 20, pp. 2658-2660, 1997.
  20. [20] R. M. Hasan and X. Luo, “Promising lithography techniques for next-generation logic devices,” Nanomanuf. Metrol., Vol.1, pp. 67-81, 2018.
  21. [21] R. Menon, A. Patel, D. Gil, and H. I. Smith, “Maskless lithography,” Materials Today, Vol.8, Issue 2, pp. 26-33, 2005.
  22. [22] Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun., Vol.4, 2061, 2013.
  23. [23] S. R. J. Brueck, “Optical and interferometric lithography – Nanotechnology enablers,” Proc. IEEE, Vol.93, No.10, pp. 1704-1721, 2005.
  24. [24] P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C. H. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the Nanoruler,” J. Vac. Sci. Technol. B, Vol.21, Issue 6, pp. 3097-3101, 2003.
  25. [25] Y. L. Chen, Y. Cai, K. Tohyama, Y. Shimizu, S. Ito, and W. Gao, “Auto-tracking single point diamond cutting on non-planar brittle material substrates by a high-rigidity force controlled fast tool servo,” Precis. Eng., Vol.49, pp. 253-261, 2017.
  26. [26] X. Li, W. Gao, Y. Shimizu, and S. Ito, “A two-axis Lloyd’s mirror interferometer for fabrication of two-dimensional diffraction gratings,” CIRP Ann. Manuf. Technol., Vol.63, Issue 1, pp. 461-464, 2014.
  27. [27] Y. Shimizu, R. Aihara, K. Mano, C. Chen, Y. L. Chen, X. Chen, and W. Gao, “Design and testing of a compact non-orthogonal two-axis Lloyd’s mirror interferometer for fabrication of large-area two-dimensional scale grating,” Precis. Eng., Vol.52, pp. 138-151, 2018.
  28. [28] Y. Shimizu, K. Mano, H. Murakami, S. Hirota, H. Matsukuma, and W. Gao, “Design optimization of a non-orthogonal two-axis Lloyd’s mirror interferometer for fabrication of large-area two-dimensional scale gratings,” Precis. Eng., Vol.60, pp. 280-290, 2019.
  29. [29] P. Hidnert, “Thermal expansion of five selected optical glasses,” J. Res. Natl. Bur. Stand., Vol.52, No.6, pp. 311-312, 1954.
  30. [30] http://www.dic-global.com/en/products/epoxy/high_performance/hp4710.html [Accessed January 27, 2020]
  31. [31] Y. Shimizu, K. Mano, K. Zhang, H. Matsukuma, and W. Gao, “Accurate polarization control in nonorthogonal two-axis Lloyd’s mirror interferometer for fabrication of two-dimensional scale gratings,” Opt. Eng., Vol.58, No.9, 092611, 2019.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Dec. 01, 2020