single-au.php

IJAT Vol.13 No.6 pp. 810-816
doi: 10.20965/ijat.2019.p0810
(2019)

Paper:

Micro Fabrication of Au Thin-Film by Transfer-Printing Using Atomic Diffusion Bonding

Arata Kaneko, Taira Katayama, and Shun Morishita

Faculty of Systems Design, Tokyo Metropolitan University
6-6 Asahigaoka, Hino, Tokyo 191-0065, Japan

Corresponding author

Received:
June 24, 2019
Accepted:
September 17, 2019
Published:
November 5, 2019
Keywords:
transfer printing, thin film, microfabrication, atomic diffusion bonding
Abstract

Transfer printing of a thin film is a great candidate technique for micro/nanofabrication for microelectromechanical system (MEMS) elements. The authors propose a technique to apply atomic diffusion bonding to transfer printing of a gold (Au) thin film. When a substrate is previously coated with Au thin film as an adhesive, another Au thin film can be transfer-printed from a h-PDMS stamp to the substrate. It enables 50 μm-wide line patterns of the Au thin film located on the Au-coated Si substrate, whereas the Au thin film cannot be transfer-printed on a bare (uncoated) Si surface. The interface between two Au thin films disappears after transfer printing; hence, the Au atoms can interdiffuse from one to another to make a strong bonding. This process can be performed with a soft contact without any pressure in atmospheric and vacuum conditions. In the case of Au, the atoms can interdiffuse around a contacted area at room temperature. Moreover, one can make 50 μm-wide line patterns by 1 min of transfer printing and that of 24 h. The proposed process makes the line patterns of the Au thin film transfer-printed to be a bridged microbeam over the grooves when a prestructured (grooved) substrate is prepared.

Cite this article as:
A. Kaneko, T. Katayama, and S. Morishita, “Micro Fabrication of Au Thin-Film by Transfer-Printing Using Atomic Diffusion Bonding,” Int. J. Automation Technol., Vol.13 No.6, pp. 810-816, 2019.
Data files:
References
  1. [1] Y. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics,” Applied Physics, Vol.81, No.3, pp. 562-564, 2002.
  2. [2] M. G. Kang, H. J. Park, S. H. Ahn, and L. J. Guo, “Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells,” Solar Energy Materials & Solar Cells, Vol.94, pp. 1179-1184, 2010.
  3. [3] A. Kaneko, Y. Miyazaki, and T. Goto, “Transfer-print of CNTs and its Application to Cell Scaffold,” Int. J. Automation Technol., Vol.11, No.6, pp. 941-946, 2017.
  4. [4] H. Keum, M. Seong, S. Sinha, and S. Kim, “Electrostatically driven collapsible Au thin-films assembled using transfer printing,” Appl. Phys. Lett., Vol.100, 211904-1-4, 2012.
  5. [5] S. Kim, A. Carlson, H. Cheng, S. Lee, J.-K. Park, Y. Huang, and J. Rogers, “Enhanced adhesion with pedestal-shaped elastomeric stamp for transfer printing,” Appl. Phys. Lett., Vol.100, 171909-1-4, 2012.
  6. [6] S. Kim, J. Wu, A. Carlson, S.-H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” PNAS, Vol.107, No.40, pp. 17095-17100, 2010.
  7. [7] D.-W. Oh, S. Kim, J. A. Rogers, D. G. Cahill, and S. Sinha, “Interfacial Thermal Conductance of Transfer-Printed Metal Films,” Adv. Mater., Vol.23, pp. 5028-5033, 2011.
  8. [8] Y. Jiang, M. Zhang, X. Duan, H. Zhang, and W. Pang, “A flexible, gigahertz, and free-standing thin film piezoelectric MEMS resonator with high figure of merit,” Applied Physics Letters, Vol.111, 023505, 2017.
  9. [9] L. Zhang, Y. Jiang, B. Liu, M. Zhang, and W. Pang, “Highly flexible piezoelectric MEMS resonators encapsulated in polymer thin films,” Proc. IEEE Micro Electro Mechanical Systems (MEMS), pp. 170-173, 2018.
  10. [10] J. Zaumseil, M. A. Meitl, J. W. P. Hsu, B. R. Acharya, K. W. Baldwin, Y. L. Loo, and J. A. Rogers, “Three dimensional and multilayer nanostructures formed by nanotransfer printing,” Nano Letters, Vol.3, No.9, pp. 1223-1227, 2003.
  11. [11] T. Yamashita, K. Yoshino, and A. Kaneko, “Micro/Nano-Mechanical Structure Fabricated by Transfer Printing,” Int. J. of Precision Engineering and Manufacturing, Vol.15, No.12, pp. 2581-2587, 2014.
  12. [12] A. Kaneko, H. Murakami, and T. Yamashita, “Effect of surface property on transfer-Print of Au thin-Film on micro-structured substrate,” Int. J. Automation Technol., Vol.9, No.4, pp. 411-417, 2015.
  13. [13] T. Katayama, K. Nagahashi, A. Kawahata, and A. Kaneko, “Effects of stamp properties on transfer-print and its application to fabricate a micro-tactile sensor,” Proc. The 9th Int. Conf. on Leading Edge Manufacturing in 21st Century, 105, 2017.
  14. [14] H. Lee, D. S. Um, Y. Lee, S. Lim, H. J. Kim, and H. Ko, “Octopus-inspired smart adhesive pads for transfer printing of semiconducting nanomembranes,” Advanced Materials, Vol.28, No.34, pp. 7457-7465, 2016.
  15. [15] S. Cho, N. Kim, K. Song, and J. Lee, “Adhesiveless transfer printing of ultrathin microscale semiconductor materials by controlling the bending radius of an elastomeric stamp,” Langmuir, Vol.32, pp. 7951-7957, 2016.
  16. [16] J. W. Kim, K. Y. Yang, S. H. Hong, and H. Lee, “Formation of Au nano-patterns on various substrate using simplified nano-transfer printing method,” Applied Surface Science, Vol.254, pp. 5607-5611, 2008.
  17. [17] T. H. Kim, M. M. R. Howlader, T. Itoh, and T. Suga, “Room temperature Cu-Cu direct bonding using surface activated bonding method,” J. Vac. Sci. Technol. A, Vol.21, No.2, pp. 449-453, 2003.
  18. [18] Y.-H. Wang, M. R. Howlader, K. Nishida, T. Kimura, and T. Suga, “Study on Sn-Ag Oxidation and Feasibility of Room Temperature Bonding of Sn-Ag-Cu Solder,” Materials Trans., Vol.46, No.11, pp. 2431-2436, 2005.
  19. [19] E. Higurashi, K. Okumura, Y. Kunimune, T. Suga, and K. Hagiwara, “Room-Temperature Bonding of Wafers with Smooth Au Thin Films in Ambient Air Using a Surface-Activated Bonding Method,” IEICE Trans. on Electronics, Vol.E100-C, No.2, pp. 156-160, 2017.
  20. [20] T. Matsumae, Y. Kurashima, and H. Takagi, “Surface activated bonding of Ti/Au and Ti/Pt/Au films after vacuum annealing for MEMS packaging,” Microelectronic Engineering, Vol.197, pp. 76-82, 2018.
  21. [21] T. Shimatsu and M. Uomoto, “Room temperature bonding of wafers with thin nanocrystalline metal films,” ECS Trans., Vol.33, No.4, pp. 61-72, 2010.
  22. [22] T. Shimatsu and M. Uomoto, “Atomic diffusion bonding of wafers with thin nano crystalline metal films,” J. Vac. Sci. Technol. B, Vol.28, No.4, pp. 706-714, 2010.
  23. [23] Y. Kurashima, T. Matsumae, and H. Takagi, “Room-temperature Au-Au bonding in atmospheric air using direct transferred atomically smooth Au film on electroplated patterns,” Microelectronic Engineering, Vol.189, pp. 1-5, 2018.
  24. [24] N. Moronuki, “Functional Texture Design and Texturing Processes,” Int. J. Automation Technol., Vol.10, No.1, pp. 4-15, 2016.
  25. [25] J. N. Israelachvili, “Intermolecular and Surface Forces, Nanotechnology,” Elsevier, 2004.
  26. [26] E. Dechaumphai, Z. Zhang, N. P. Siwak, R. Ghodssi, and T. Li, “Resonant frequency of gold/polycarbonate hybrid nano resonators fabricated on plastics via nano-transfer printing,” Nano Research Letter, Vol.6, No.90, 2011.
  27. [27] M. Yoshino, T. Ueno, and M. Terano, “Nano Texturing and Self-Organization Process for Development of Optical Functional Surface,” Int. J. Automation Technol., Vol.10, No.1, pp. 41-47, 2016.
  28. [28] P. Potejanasak, M. Yoshino, M. Terano, and M. Mita, “Efficient Fabrication Process of Metal Nanodot Arrays Using Direct Nanoimprinting Method with a Polymer Mold,” Int. J. Automation Technol., Vol.9, No.6, pp. 629-635, 2015.
  29. [29] M. Yasui, S. Kaneko, M. Takahashi, T. Sano, Y. Hirabayashi, T. Ozawa, and R. Maeda, “Micro Imprinting for Al Alloy Using Ni-W Electroformed Mold,” Int. J. Automation Technol., Vol.9, No.6, pp. 674-677, 2015.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 18, 2024