IJAT Vol.13 No.2 pp. 254-260
doi: 10.20965/ijat.2019.p0254


Growth Behavior of Au Films on SiO2 Film and Direct Transfer for Smoothing Au Surfaces

Michitaka Yamamoto*,**, Takashi Matsumae*, Yuichi Kurashima*, Hideki Takagi*, Tadatomo Suga***, Toshihiro Itoh**, and Eiji Higurashi*,***,†

*National Institute of Advanced Industrial Science and Technology (AIST)
1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan

Corresponding author

**Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan

***School of Engineering, The University of Tokyo, Tokyo, Japan

July 6, 2018
January 7, 2019
March 5, 2019
smoothing process, smooth Au surfaces, room temperature Au-Au bonding, direct transfer technique

Direct transfer of Au films deposited on smooth SiO2 film with RMS (root mean square) surface roughness of 0.24 nm was investigated with the aim of generating smooth Au surfaces. Deposited Au films with different thicknesses were transferred to rough Au surfaces on target substrates at room temperature with a contact pressure of 50 MPa. Observation of the growth behavior of the deposited films revealed that they formed a continuous structure when their nominal film thickness was around 15 nm or above. The transfer of continuous Au films with a thickness of 20, 51, or 102 nm reduced the RMS roughness of the rough Au surfaces from 1.6 nm to 0.4 nm. In contrast, the transfer of Au films with a thickness less than 5 nm increased their surface roughness. This direct transfer technique should thus be useful for low temperature bonding.

Cite this article as:
M. Yamamoto, T. Matsumae, Y. Kurashima, H. Takagi, T. Suga, T. Itoh, and E. Higurashi, “Growth Behavior of Au Films on SiO2 Film and Direct Transfer for Smoothing Au Surfaces,” Int. J. Automation Technol., Vol.13 No.2, pp. 254-260, 2019.
Data files:
  1. [1] B. A. Cetiner, J. Y. Qian, H. P. Chang, M. Bachman, G. P. Li, and F. De Flaviis, “Monolithic integration of RF MEMS switches with a diversity antenna on PCB substrate,” IEEE Trans. Microw. Theory Tech., Vol.51, No.1, pp. 332-335, 2003.
  2. [2] N. Inomata, M. Toda, and T. Ono, “Microfabricated Temperature-Sensing Devices Using a Microfluidic Chip for Biological Applications,” Int. J. Automation Technol., Vol.12, No.1, pp. 15-23, 2018.
  3. [3] E. Higurashi, “Low-Temperature Bonding Technologies for Photonics Applications,” ECS Trans., Vol.50, No.7, pp. 351-362, 2013.
  4. [4] E. E. Aktakka, R. L. Peterson, and K. Najafi, “Wafer-Level Integration of High-Quality Bulk Piezoelectric Ceramics on Silicon,” IEEE Trans. Electron Devices, Vol.60, No.6, pp. 2022-2030, 2013.
  5. [5] K. Okumura, E. Higurashi, T. Suga, and K. Hagiwara, “Low-temperature GaAs/SiC wafer bonding with Au thin film for high-power semiconductor lasers,” 2014 Int. Conf. on Electronics Packaging (ICEP), pp. 716-719, 2014.
  6. [6] G.-S. Park, Y.-K. Kim, K.-K. Paek, J.-S. Kim, J.-H. Lee, and B.-K. Ju, “Low-Temperature Silicon Wafer-Scale Thermocompression Bonding Using Electroplated Gold Layers in Hermetic Packaging,” Electrochem. Solid-State Lett., Vol.8, No.12, pp. G330-G332, 2005.
  7. [7] T. Matsumae, Y. Kurashima, H. Umezawa, Y. Mokuno, and H. Takagi, “Room-temperature bonding of single-crystal diamond and Si using Au/Au atomic diffusion bonding in atmospheric air,” Microelectron. Eng., Vol.195, pp. 68-73, 2018.
  8. [8] E. Higurashi, T. Imamura, T. Suga, and R. Sawada, “Low temperature bonding of laser diode chips on Si substrates using plasma activation of Au films,” IEEE Photon. Tech. Lett., Vol.19, No.24, pp. 1994-1996, 2007.
  9. [9] T. Shimatsu and M. Uomoto, “Room Temperature Bonding of Wafers with Thin Nanocrystalline Metal Films,” ECS Trans., Vol.33, No.4, pp. 61-72, 2010.
  10. [10] E. Higurashi, K. Okumura, Y. Kunimune, T. Suga, and K. Hagiwara, “Room-Temperature Bonding of Wafers with Smooth Au Thin Films in Ambient Air Using a Surface-Activated Bonding Method,” IEICE Trans. Electron., Vol.E100-C, No.2, pp. 156-160, 2017.
  11. [11] R. Takigawa, E. Higurashi, T. Suga, and R. Sawada, “Room-Temperature Bonding of Vertical-Cavity Surface-Emitting Laser Chips on Si Substrates Using Au Microbumps in Ambient Air,” Appl. Phys. Express, Vol.1, No.11, p. 112201, 2008.
  12. [12] M. Goto, K. Hagiwara, Y. Iguchi, H. Ohtake, T. Saraya, E. Higurashi, H. Toshiyoshi, and T. Hiramoto, “3-D Silicon-on-Insulator Integrated Circuits With NFET and PFET on Separate Layers Using Au/SiO2 Hybrid Bonding,” IEEE Trans. Electron Devices, Vol.61, No.8, pp. 2886-2892, 2014.
  13. [13] H. Hirano, K. Hikichi, and S. Tanaka, “The wafer-level vacuum sealing and electrical interconnection using electroplated gold bumps planarized by single-point diamond fly cutting,” 2015 Int. Conf. on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), pp. 1283-1286, 2015.
  14. [14] Y.-H. Wang and T. Suga, “20-μm-pitch Au micro-bump interconnection at room temperature in ambient air,” Electronic Components and Technology Conf. (ECTC 2008), pp. 944-949, 2008.
  15. [15] V. J. Logeeswaran et al., “Ultra-smooth metal surfaces generated by pressure-induced surface deformation of thin metal films,” Appl. Phys. A Mater. Sci. Process., Vol.87, No.2, pp. 187-192, 2007.
  16. [16] Y. Kurashima, A. Maeda, R. Takigawa, and H. Takagi, “Room temperature wafer bonding of metal films using flattening by thermal imprint process,” Microelectron. Eng., Vol.112, pp. 52-56, 2013.
  17. [17] E. Higurashi, M. Yamamoto, T. Sato, T. Suga, and R. Sawada, “Room-Temperature Gold-Gold Bonding Method Based on Argon and Hydrogen Gas Mixture Atmospheric-Pressure Plasma Treatment for Optoelectronic Device Integration,” IEICE Trans. Electron., Vol.99, No.3, pp. 339-345, 2016.
  18. [18] P. Wagner, M. Hegner, H.-J. Giintherodt, and G. Semenza, “Formation and in Situ Modification of Monolayers Chemisorbed on Ultraflat Template-Stripped Gold Surfaces,” Langmuir, Vol.11, pp. 3867-3875, 1995.
  19. [19] Y. Kurashima, T. Matsumae, and H. Takagi, “Room-temperature Au-Au bonding in atmospheric air using direct transferred atomically smooth Au film on electroplated patterns,” Microelectron. Eng., Vol.189, pp. 1-5, 2018.
  20. [20] P. Potejanasak, M. Yoshino, and M. Terano, “Fabrication of Metallic Nanodot Arrays Using Nano-Chemical Stamping Technique with a Polymer Stamp,” Int. J. Automation Technol., Vol.10, No.5, pp. 794-803, 2016.
  21. [21] K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, S. Olafsson, and M. C. Gather, “Ultra-thin gold films on transparent polymers,” Nanophotonics, Vol.2, No.1, pp. 3-11, 2013.
  22. [22] G. C. Bond, “Gold: a relatively new catalyst,” Catal. Today, Vol.72, Nos.1-2, pp. 5-9, 2002.
  23. [23] R. Sangiorgi, M. L. Muolo, D. Chatain, and N. Eustathopoulos, “Wettability and Work of Adhesion of Nonreactive Liquid Metals on Silica,” J. Am. Ceram. Soc., Vol.71, No.9, pp. 742-748, 1988.
  24. [24] P. Procházka, J. Mach, D. Bischoff, Z. Lišková, P. Dvořák, M. Vaňatka, P. Simonet, A. Varlet, D. Hemzal, M. Petrenec, L. Kalina, M. Bartošík, K. Ensslin, P. Varga, J. Čechal, and T. Šikola, “Ultrasmooth metallic foils for growth of high quality graphene by chemical vapor deposition,” Nanotechnology, Vol.25, No.18, p. 185601, 2014.
  25. [25] M. Yamamoto, E. Higurashi, T. Suga, R. Sawada, and T. Itoh, “Properties of various plasma surface treatments for low-temperature Au–Au bonding,” Jpn. J. Appl. Phys., Vol.57, No.4S, p. 04FC12, 2018.
  26. [26] M. Todeschini, A. Bastos da Silva Fanta, F. Jensen, J. B. Wagner, and A. Han, “Influence of Ti and Cr Adhesion Layers on Ultrathin Au Films,” ACS Appl. Mater. Interfaces, Vol.9, No.42, pp. 37374-37385, 2017.
  27. [27] R. A. Matula, “Electrical resistivity of copper, gold, palladium, and silver,” J. Phys. Chem. Ref. Data, Vol.8, No.4, pp. 1147-1298, 1979.
  28. [28] K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, S. Olafsson, and M. C. Gather, “Ultra-thin gold films on transparent polymers,” Nanophotonics, Vol.2, No.1, pp. 3-11, 2013.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on May. 19, 2024