IJAT Vol.12 No.6 pp. 921-929
doi: 10.20965/ijat.2018.p0921


Influence of Various Conditions on Quality of Burnished Surface in Developed Roller Burnishing with Active Rotary Tool

Masato Okada*,†, Makoto Shinke**, Masaaki Otsu*, Takuya Miura*, and Kuniaki Dohda***

*Faculty of Engineering, University of Fukui
3-9-1 Bunkyo, Fukui 910-8507, Japan

Corresponding author

**Graduate School of Engineering, University of Fukui, Fukui, Japan

***Department of Mechanical Engineering, Northwestern University, Evanston, USA

April 5, 2018
September 19, 2018
November 5, 2018
roller burnishing, burnishing conditions, surface quality, aluminum alloy

Burnishing characteristics of a newly developed roller burnishing method were developed. The developed method can effectively control the sliding direction between the roller and a cylindrical workpiece by inclining the roller axis with respect to the workpiece axis. The outer surface of a round aluminum alloy bar was targeted. The influence of burnishing conditions on burnished-surface quality was investigated, and surface quality was evaluated based primarily on the surface roughness, surface profile, and external appearance. As observed, the burnished-surface quality was strongly influenced by the pressing force, roller-inclination angle, and number of tool passes. A superior surface quality could be realized by increasing the number of tool passes.

Cite this article as:
M. Okada, M. Shinke, M. Otsu, T. Miura, and K. Dohda, “Influence of Various Conditions on Quality of Burnished Surface in Developed Roller Burnishing with Active Rotary Tool,” Int. J. Automation Technol., Vol.12 No.6, pp. 921-929, 2018.
Data files:
  1. [1] K. Shimada, C.-I. Kuo, M. Mizutani, and T. Kuriyagawa, “Statical analysis for evaluating surface roughness of plane honing,” Int. J. Automation Technol., Vol.8, pp. 576-583, doi: 10.20965/ijat.2014.p0576, 2014.
  2. [2] S. Kikuchi, Y. Nakamura, K. Nambu, and T. Akahori, “Formation of hydroxyapatite layer on Ti-6Al-4V ELI Alloy by fine particle peening,” Int. J. Automation Technol., Vol.11, pp. 915-924, doi: 10.20965/ijat.2017.p0915, 2017.
  3. [3] H. Hamadache, L. Laouar, N. E. Zeghib, and K. Chaoui, “Characteristics of Rb40 steel superficial layer under ball and roller burnishing,” J. Mater. Process. Technol., Vol.180, pp. 130-136, doi: 10.1016/j.jmatprotec.2006.05.013, 2006.
  4. [4] G. D. Ravankar, R. Shetty, S. S. Rao, and V. N. Gaitonde, “Wear resistance enhancement of titanium alloy (Ti-6Al-4V) by ball burnishing process,” J. Mater. Res. Technol., Vol.6, pp. 13-32, doi: 10.1016/j.jmrt.2016.03.007, 2017.
  5. [5] N. S. M. El-Tayeb, K. O. Low, and P. V. Brevern, “On the surface and tribological characteristics of burnished cylindrical Al-6061,” Trib. Int., Vol.42, pp. 320-326, doi: 10.1016/j.triboint.2008.07.003, 2009.
  6. [6] Ł, Janczewski Ł, D. Toboł a, W. Brostow, K. Czechowski, H. E. H. Lobland, M. Kot, and K. Zagórski, “Effects of ball burnishing on surface properties of low density polyethylene,” Trib. Int. Vol.93, pp. 36-42, doi: 10.1016/j.triboint.2015.09.006, 2016.
  7. [7] M. Duscha, F. Klocke, and H. Wegner, “Residual stress model for speed-stroke grinding of hardened steel with CBN grinding wheels,” Int. J. Automation Technol., Vol.5, pp. 439-444, doi: 10.20965/ijat.2011.p0439, 2011.
  8. [8] Y. Tian and Y. C. Shin, “Laser-assisted burnishing of metals,” Int. J. Mach. Tools Manuf., Vol.47, pp. 14-22, doi: 10.1016/j.ijmachtools.2006.03.002, 2007.
  9. [9] L. E. A. Sanchez, F. Giaretta, L. G. Nogueira, and R. R. Ingraci Neto, “Effect of hot burnishing aided by infrared radiation on the modification of surface and subsurface of AISI 1045 steel,” Procedia CIRP, Vol.58, pp. 463-468, doi: 10.1016/j.procir.2017.03.254, 2017.
  10. [10] B. Huang, Y. Kaynak, Y. Sun, and I. S. Jawahir, “Surface layer modification by cryogenic burnishing of Al 7050-T7451 alloy and validation with FEM-based burnishing model,” Procedia CIRP, Vol.31, pp. 1-6, doi: 10.1016/j.procir.2015.03.097, 2015.
  11. [11] J. A. Travieso-Rfodriguez, G. Gómez Gras, J. Jorba Peiró, F. Carrillo, G. Dessein, J. Alexis, and H. González Rojas, “Experimental study on the mechanical effects of the vibration-assisted ball-burnishing process,” Mater. Manuf. Process., Vol.30, pp. 1490-1497, doi: 10.1080/10426914.2015.1019114, 2015.
  12. [12] J. Zhao and Z. Liu, “Investigations of ultrasonic frequency effects on surface deformation in rotary ultrasonic roller burnishing Ti-6Al-4V,” Mater. Des., Vol.107, pp. 238-249, doi: 10.1016/j.matdes.2016.06.024, 2016.
  13. [13] S. J. Ebeid and T. A. El-Taweel, “Surface improvement through hybridization of electrochemical turning and roller burnishing based on the Taguchi technique,” J. Eng. Manuf., Vol.219, pp. 423-430, doi: 10.1243/095440505X32283, 2005.
  14. [14] T. A. El-Taweel and S. J. Ebeid, “Effect of hybrid electrochemical smoothing-roller burnishing process parameters on roundness error and micro-hardness,” Int. J. Adv. Manuf. Technol., Vol.42, pp. 643-655, doi: 10.1007/s00170-008-1632-0, 2009.
  15. [15] J. Kodácsy and J. Liska, “Magnetic assisted roller burnishing and deburring of flat metal surfaces,” Adv. Mater. Res., Vol.427, pp. 908-911, doi: 10.4028/, 2012.
  16. [16] Z. Kovács, “The investigation of tribological characteristics of surface improved by magnetic polishing and roller burnishing,” Procedia Eng, Vol.149, pp. 183-189, doi: 10.1016/j.proeng.2016.06.654, 2016.
  17. [17] N. Sugita, K. Nishioka, and M. Mitsuishi, “Ultra-precision machining of tungsten-based alloys by cutting and burnishing,” Int. J. Automation Technol., Vol.5, pp. 320-325, doi: 10.20965/ijat.2011.p0320, 2011.
  18. [18] V. P. Kuznetsov, I. Y. Smolin, A. I. Dmitriev, S. Y. Tarasov, and V. G. Gorgots, “Toward control of subsurface strain accumulation in nanostructuring burnishing on thermostrengthened steel,” Surf. Coat. Technol., Vol.285, pp. 171-178, doi: 10.1016/j.surfcoat.2015.11.045, 2016.
  19. [19] M. Okada, H. Kozuka, H. Tachiya, T. Iwasaki, and Y. Yamashita, “Burnishing process using spherical 5-DOF hybrid-type parallel mechanism with force control,” Int. J. Automation Technol., Vol.8, pp. 243-252, doi: 10.20965/ijat.2014.p0243, 2014.
  20. [20] M. Okada, M. Shinya, H. Matsubara, H. Kozuka, H. Tachiya, N. Asakawa, and M. Otsu, “Development and characterization of diamond tip burnishing with a rotary tool,” J. Mater. Process. Technol., Vol.44, pp. 106-115, doi: 10.1016/j.jmatprotec.2017.01.020, 2017.
  21. [21] H. Tanaka, H. Tabuto, K. Yanagi, and M. Futamura, “Effect of surface hardened steel texture of preliminary process on burnishing process: a metrological study of hardened steel surface finishing using diamond burnishing tool,” J. Jpn. Soc. Technol. Plast., Vol.50, pp. 555-559, doi: 10.9773/sosei.50.555, 2009 (in Japanese).
  22. [22] M. Okada, S. Suenobu, K. Watanabe, Y. Yamashita, and N. Asakawa, “Development and burnishing characteristics of roller burnishing method with rolling and sliding effects,” Mechatron., Vol.29, pp. 110-118, doi: 10.1016/j.mechatronics.2014.11.002, 2015.
  23. [23] M. Okada, Y. Miyagoshi, and M. Otsu, “Roller burnishing method with active rotation tool – better surface finish than conventional roller burnishing,” Key Eng. Mater., Vol.749, pp. 9-14, doi: 10.4028/, 2017.
  24. [24] L. Luca, S. Neagu-Ventzes, and I. Marinescu, “Effects of working parameters on surface finish in ball-burnishing of hardened steels,” Prec. Eng., Vol.29, pp. 253-256, doi: 10.1016/j.precisioneng.2004. 02.002, 2005.
  25. [25] M. Futamura, A. Ishitani, T. Makino, and K. Dohda, “Proposal of a ball burnishing method with forced rotation,” Trib. Online, Vol.6, pp. 199-206, doi: 10.2474/trol.6.199, 2011.
  26. [26] M. H. El-Axir, “An investigation into roller burnishing,” Int. J. Mach. Tools Manuf., Vol.20, pp. 1603-1617, doi: 10.1016/S0890-6955(00)00019-5, 2000.
  27. [27] M. Korzynski, “Modeling and experimental validation of the force-surface roughness relation for smoothing burnishing with a spherical tool,” Int. J. Mach. Tools Manuf., Vol.47, pp. 1956-1964, doi: 10.1016/j.ijmachtools.2007.03.002, 2007.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jun. 19, 2024