single-au.php

IJAT Vol.12 No.5 pp. 658-668
doi: 10.20965/ijat.2018.p0658
(2018)

Paper:

Simulation-Based Dimensioning of the Required Actuator Force for Active Vibration Control

Robin Kleinwort, Philipp Weishaupt, and Michael F. Zaeh

Technical University of Munich
Boltzmannstrasse 15, 85748 Garching, Germany

Corresponding author

Received:
January 19, 2018
Accepted:
May 24, 2018
Published:
September 5, 2018
Keywords:
actuator design, active damping, machine tools, chatter, cutting force optimization
Abstract

The material removal rates of machine tools are often limited by chatter, which is caused by the machine’s most flexible structural modes. Active vibration control systems mitigate chatter vibrations and increase the chatter-free depth of cut. The systems can be used for already-in-use machine tools in particular as a retrofit solution. Unfortunately, no dimensioning techniques exist to help in finding the right actuator size required for a specific machine tool. This publication presents a simulation-based dimensioning methodology that determines, based on a stability analysis, the required actuator force and bandwidth. First, the critical machining processes, based on machine tool specific parameters, are identified. Then, the required actuator force and bandwidth are determined with the help of a coupled simulation model that consists of a cutting force model, the machine’s structural dynamics, and a model of the active vibration control system.

Cite this article as:
R. Kleinwort, P. Weishaupt, and M. Zaeh, “Simulation-Based Dimensioning of the Required Actuator Force for Active Vibration Control,” Int. J. Automation Technol., Vol.12 No.5, pp. 658-668, 2018.
Data files:
References
  1. [1] E. Abele, G. Pfeiffer, B. Jalizi, and A. Bretz, “Simulation and development of an active damper with robust μ-control for a machine tool with a gantry portal,” Prod. Eng. Res. Devel., Vol.10, No.4-5, pp. 519-528, 2016.
  2. [2] J. Munoa, I. Mancisidor, N. Loix, L. G. Uriarte, R. Barcena, and M. Zatarain, “Chatter suppression in ram type travelling column milling machines using a biaxial inertial actuator,” CIRP Annals, Vol.62, No.1, pp. 407-410, 2013.
  3. [3] R. Kleinwort, J. Platz, and M. F. Zaeh, “Adaptive Active Vibration Control for Machine Tools with Highly Position-Dependent Dynamics,” Int. J. Automation Technol., Vol.12, No.5, 2018.
  4. [4] T. Q. Thanh, D. Q. Truong, N. M. Tri, and K. K. Ahn, “Development of a Novel Linear Magnetic Actuator,” Int. J. Automation Technol., Vol.8, No.6, pp. 864-873, 2014.
  5. [5] H. Mizumoto, Y. Tazoe, T. Hirose, and K. Atoji, “Performance of High-Speed Precision Air-Bearing Spindle with Active Aerodynamic Bearing,” Int. J. Automation Technol., Vol.9, No.3, pp. 297-302, 2015.
  6. [6] M. F. Zaeh, R. Kleinwort, P. Fagerer, and Y. Altintas, “Automatic tuning of active vibration control systems using inertial actuators,” CIRP Annals, Vol.66, No.1, pp. 365-368, 2017.
  7. [7] C. Ehmann and R. Nordmann, “Low Cost Actuator for Active Damping of Large Machines,” IFAC Proc. Volumes, Vol.35, No.2, pp. 179-184, 2002.
  8. [8] M. Röth, “Einsatz und Beurteilung eines aktiven Strukturdämpfers in einem Bearbeitungszentrum,” Ph.D. Thesis, TU Darmstadt, 2009.
  9. [9] F. Haase, “The Investigation and Design of a Piezoelectric Active Vibration Control system for Vertical Machining Centres,” Ph.D. Thesis, University of Huddersfield, 2005.
  10. [10] M. Simnofske, “Adaptronische Versteifung von Werkzeugmaschinen durch strukturintegrierte aktive Module,” Ph.D. Thesis, TU Braunschweig, Vulkan, 2009.
  11. [11] A. Preumont, “Vibration control of active structures: an introduction,” Springer Science & Business Media, 2011.
  12. [12] M. F. Zaeh, M. Waibel, and M. Baur, “A Computational Approach to the Integration of Adaptronical Structures in Machine Tools,” Proc. of the Int. Symp. on Computational Structural Engineering, pp. 1017-1028, 2009.
  13. [13] M. Baur, “Aktives Dämpfungssystem zur Ratterunterdrückung an spanenden Werkzeugmaschinen,” Ph.D. Thesis, TU Munich, 2014.
  14. [14] M. Kaymakci, Z. M. Kilic, and Y. Altintas, “Unified cutting force model for turning, boring, drilling and milling operations,” Int. J. Machine Tools and Manufacture, Vol.54-55, pp. 34-45, 2012.
  15. [15] P. G. Petropoulos, “Optimal selection of machining rate variables by geometric programming,” Int. J. Production Research, Vol.11, No.4, pp. 305-314, 1973.
  16. [16] M. Tolouei-Rad and I. M. Bidhendi, “On the Optimization of machining parameters for milling operations,” Int. J. Machine Tools and Manufacture, Vol.37, No.1, pp. 1-16, 1996.
  17. [17] J. K. Rai, D. Brand, M. Slama, and P. Xirouchakis, “Optimal selection of cutting parameters in multi-tool milling operations using a genetic algorithm,” Int. J. Production Research, Vol.49, No.10, pp. 3045-3068, 2011.
  18. [18] P. Q. Yang and L. B. An, “Optimal Selection of Machining Parameters by Genetic Algorithms for Face-Milling Operations Based on Minimum Unit Machining Time,” Advanced Materials Research, Vol.602-604, pp. 1989-1992, 2012.
  19. [19] M. Wan, Z. M. Kilic, and Y. Altintas, “Mechanics and Dynamics of Multifunctional Tools,” J. of Manufacturing Science and Engineering, Vol.137, No.1, 2015.
  20. [20] Y. Altintas, “Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design,” Cambridge University Press, 2012.
  21. [21] M. F. Zaeh and O. Roesch, “Improvement of the Static and Dynamic Behavior of a Milling Robot,” Int. J. Automation Technol., Vol.9, No.2, pp. 129-133, 2015.
  22. [22] Miller Mapal Group: Solid carbide milling cutters, tool catalogue, http://www.miller-tools.de/en/produkte/end-mills/ [Accessed November 1, 2013]
  23. [23] Fraisa: High-performance milling tools, tool catalogue, http://www.fraisa.com/en/products/end-milling-tools [Accessed November 1, 2013]
  24. [24] J. Milberg, “Werkzeugmaschinen-Grundlagen: Zerspantechnik, Dynamik, Baugruppen und Steuerungen,” Springer, 1992.
  25. [25] M. Eynian and Y. Altintas, “Chatter stability of general turning operations with process damping,” J. of Manufacturing Science and Engineering, Trans. of the ASME, Vol.131, No.4, pp. 501-510, 2009.
  26. [26] A. Tekeli and E. Budak, “Maximization of chatter-free material removal rate in end milling using analytical methods,” Machining Science and Technology, Vol.9, No.2, pp. 147-167, 2005.
  27. [27] Y. Altintas and E. Budak, “Analytical prediction of stability lobes in milling,” CIRP Annals, Vol.44, No.1, pp. 357-362, 1995.
  28. [28] D. J. Ewins, “Modal Testing: Theory, Practice and Application,” Research Studies Press, 1995.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 18, 2024