IJAT Vol.10 No.2 pp. 262-271
doi: 10.20965/ijat.2016.p0262


Orientation Smoothing for 5-Axis Machining Using Quasi-Redundant Degrees of Freedom

Florian Sellmann*, Titus Haas**,†, Hop Nguyen*, Sascha Weikert**, and Konrad Wegener*

*Institute for Machine Tools and Manufacturing
Tannenstrasse 3, 8092 Zürich, Switzerland

**inspire AG
Technoparkstrasse 1, 8005 Züurich, Switzerland

Corresponding author,

July 20, 2015
December 11, 2015
Online released:
March 4, 2016
March 5, 2016
set point generation, 5-axis machining, geometry optimisation, quadratic programming, machine tool

A new approach for set point generation in the field of 5-axis machining using quasi-redundant degrees of freedom is introduced in this study. In machine tools that possess both rotational and translational axes, no bijective correlation exists between the tool center point and the movement of the machine tool axes based on the manufacturing tolerances. Depending on the manufacturing process, as many as two additional degrees of freedom exist that allow the machine tool axes movement to be optimised within the given manufacturing tolerances with respect to the axes’ inertia. In this study to reduce the mechanical excitation of the machine tool, the jerk of the machine tool axes is minimised. To enhance robustness, the optimisation problem is formulated as a quadratic program with linear constraints. This problem can be solved by using an interior point method. An application example shows that when exploiting quasi-redundancy, the mechanical excitation of the machine tool can be reduced.

Cite this article as:
F. Sellmann, T. Haas, H. Nguyen, S. Weikert, and K. Wegener, “Orientation Smoothing for 5-Axis Machining Using Quasi-Redundant Degrees of Freedom,” Int. J. Automation Technol., Vol.10, No.2, pp. 262-271, 2016.
Data files:
  1. [1]  R. Neugebauer, “Parallelkinematische Maschinen,” Springer-Verlag Berlin Heidleberg, 2006.
  2. [2]  C. Castagnetti, E. Duc, and P. Ray, “The Domain of Admissible Orientation concept: A new method for five-axis tool path optimisation,” Computer-Aided Design, Vol.40, No.9, pp. 938-950, 2008.
  3. [3]  G. Vosniakos and Z. Kannas, “Motion coordination for industrial robotic systems with redundant degrees of freedom,” Robotics and Computer-Integrated Manufacturing, Vol.25, No.2, pp. 417-431, 2009.
  4. [4]  M. Steinlin, “Model based Feed-rate Optimization for Machine Tool Trajectories,” Ph.D. thesis, ETH Züurich, Switzerland, 2012.
  5. [5]  C. Brecher and C. Heyers, “Gesteigerte Dynamik mit dem Einsatz redundanter Achsen,” Werkstattstechnik online, Vol.101, pp. 31-38, 2011.
  6. [6]  T. Schröoder, “Entwicklung und Evaluation von Algorithmen zur zeitoptimierten Bewegungszerlegung bei kinematisch redundanten Werkzeugmaschinen,” Ph.D. thesis, Technische Universit”at Chemnitz, 2007.
  7. [7]  R. Neugebauer, W.-G. Drossel, S. Ihlenfeldt, and C. Harzbecker, “Design method for machine tools with bionic inspired kinematics,” CIRP Annals – Manufacturing Technology, Vol.58, No.1, pp. 371-374, 2009.
  8. [8]  J.-H. Chin and Y.-C. Chen, “System gains configuration and coordination of redundant degrees of freedom by genetic algorithms for multi-axis machine system in manufacturing,” Computers & Industrial Engineering, Vol.52, No.4, pp. 355-379, 2007.
  9. [9]  J. Kaneko and K. Horio, “Tool Posture Planning Method for Continuous 5-Axis Control Machining on Machine Tool Coordinate System to Optimize Motion of Translational Axes,” Int. J. of Automation Technology, Vol.5, pp. 729-737, 2011.
  10. [10]  Y. Halevi, E. Carpanzano, G. Montalbano, and Y. Koren, “Minimum energy control of redundant actuation machine tools,” CIRP Annals – Manufacturing Technology, Vol.60, No.1, pp. 433-436, 2011.
  11. [11]  I. N. Bronstein, K. A. Semendjajew, G. Musiol, and H. Müuhlig, “Taschenbuch der Mathematik,” Verlag Harri Deutsch, 2013.
  12. [12]  J. Bretschneider and T. Menzel, “Virtual Optimization of Machine Tools and Production Processes,” Int. J. of Automation Technology, Vol.1, pp. 136-140, 2007.
  13. [13]  M. H. Nguyen, S. Weikert, and K. Wegener, “Toolbox for control system analysis of machine tools,” Proc. of the 13th Mechatronic Forum Int. Conf., Linz, Austria, 2012.
  14. [14]  F. Sellmann, T. Haas, H. Nguyen, S. Weikert, and K. Wegener, “Geometry Optimisation for 2D Cutting: A Quadratic Programming Approach,” Int. J. of Automation Technology, Vol.10, No.2, pp. 272-281, 2016.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Nov. 15, 2018