IJAT Vol.10 No.1 pp. 114-120
doi: 10.20965/ijat.2016.p0114


Multi-Axis Control Ultraprecision Machining Based on Tool Setting Errors Compensation

Shinnosuke Baba*, Keiichi Nakamoto*, and Yoshimi Takeuchi**

*Tokyo University Agriculture and Technology
2-24-16 Naka-cho, Koganei, Tokyo, Japan

**Chubu University
100 Matsumoto-cho, Kasugai, Aichi, Japan

July 31, 2015
November 2, 2015
Online released:
January 4, 2016
January 5, 2016
ultraprecision machining, multi-axis control, diamond cutting tool, setting errors, tool position
Initial position errors generated while setting cutting tools can deteriorate machining accuracy. However, because of the manual setting process, it is difficult to prevent the tool setting errors, which can increase in accordance with the number of the control axes. These errors make it difficult to locate the tool accurately at the correct position in multi-axis control machining. Therefore, this study aims to achieve multi-axis control ultraprecision machining based on tool setting errors compensation. From the conducted experiments, it is found that the proposed method is effective for compensating the tool setting errors in multi-axis control ultraprecision machining.
Cite this article as:
S. Baba, K. Nakamoto, and Y. Takeuchi, “Multi-Axis Control Ultraprecision Machining Based on Tool Setting Errors Compensation,” Int. J. Automation Technol., Vol.10 No.1, pp. 114-120, 2016.
Data files:
  1. [1] M. Suematsu, T. Fujii, A. Kawahara, T. Tanimoto, T. Matsumoto, and H. Watanabe, “Ultra-precision linear motor positioning technique,” Jounal of Robotics and Mechatronics, Vol.3, No.4, pp. 328-333, 1991.
  2. [2] G. Chapman, “Ultra-precision machining systems; an enabling technology for perfect surfaces,” Moore Nanotechnology Systems, 2004.
  3. [3] H. Suzuki, “Multi-axis controlled ultraprecision machining and measurement,” Int. J of Automation Technology, Vol.3, No.3, pp. 227-232, 2009.
  4. [4] J. Otsuka and S. Hayama, “Special issue on precision and ultraprecision positioning,” Int. J. of Automation Technology, Vol.3, No.3. pp. 223-226, 2009.
  5. [5] E. Brinksmeier, Y. Mutlugüunes, F. Klocke, J. C. Aurich, P. Shore, and H. Ohmori., “Ultra-precision grinding,” CIRP Annals-Manufacturing Technology, Vol.59. No.2, pp. 652-671, 2010.
  6. [6] H. Sawano, R. Kobayashi, H. Yoshioka, and H. Shinno, “A proposed ultraprecision machining process monitoring method using causal network model of air spindle system,” Int. J of Automation Technology, Vol.5, No.3, pp. 362-368, 2011.
  7. [7] Y. Nakao, K. Suzuki, K. Yamada, and K. Nagasaka, “Feasibility study on design of spindle supported by high-stiffness water hydrostatic thrust bearing,” Int. J of Automation Technology, Vol.8, No.4, pp. 530-538, 2014.
  8. [8] X. Jiang, P. Scott, and D. Whitehouse, “Freeform surface characterisation-A fresh strategy,” CIRP Annals-Manufacturing Technology, Vol.56, No.1, pp. 553-556, 2007.
  9. [9] J. S. Lin, W. L. Tai, C. L. Lai, and Y. Takeuchi, “New daylight panel design using ultra-precision machining,” Int. J of Automation Technology, Vol.3, No.1, pp. 89-98, 2009.
  10. [10] H. Sawano, M. Takahashi, H. Yoshioka, H. Shinno, and K. Mitsu, “On-machine optical surface profile measuring system for nano-machining,” Int. J of Automation Technology, Vol.5, No.3, pp. 369-376, 2011.
  11. [11] F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Annals-Manufacturing Technology, Vol.62, No.2, pp. 823-846, 2013.
  12. [12] R. Huang, X. Zhang, M. Rahman, A. S. Kumar, and K. Liu, “Ultra-precision machining of radial Fresnel lens on roller moulds,” CIRP Annals-Manufacturing Technology, Vol.64, No.1, 2015.
  13. [13] Y. Takeuchi, K. Sawada, and T. Sara, “Manufacture of micropropellers by means of ultraprecision milling machine” Journal of Robotics and Mechatronics, Vol.9, pp. 475-479 1997.
  14. [14] D. J. Cox, G. Newby, H. W. Park, Y. L. Steven, W. L. Liu, S. B. Hsieh, and J. Hwang, “Precision machining with micro-scale vertical machining center,” Journal of Advanced Computational Intelligence and Intelligent Informatics, Vol.10, No.2, pp. 187-195, 2006.
  15. [15] C. Y. Chan, L. H. Li, W. B. Lee, and H. C. Wong, “Monitoring life of diamond tool in ultra-precision machining,” The Int. Journal of Advanced Manufacturing Technology, Vol.1, No.12, 2015.
  16. [16] Y. Takeuchi, H. Yonekura, and K. Sawada, “Creation of 3-D tiny statue by 5-axis control ultraprecision machining,” Computer-Aided Design, Vol.35, No.4, pp. 403-409, 2003.
  17. [17] K. Nakamoto, T. Ishida, N. Kitamura, and Y. Takeuchi, “Fabrication of microinducer by 5-axis control ultraprecision micromilling,” CIRP Annals-Manufacturing Technology, Vol.60, No.1, pp. 407-410, 2011.
  18. [18] K. Nakamoto, R Nishiyama, T. Ishida, and Y. Takeuchi, “5-axis control ultraprecision dexterous micromachining of Möobius ring,” Proc. of European Society for Precision Engineering & Nanotechnology, Vol.2, pp. 64-67, 2013.
  19. [19] M. Sono, Y. Sakaida, T. Kawai, and Y. Takeuchi, “Development of tool setting error compensation method for 5-axis control ultraprecision machining,” In Proc. of ASPE 20th Annual Meeting, Vol.435, 2005.
  20. [20] K. Nakamoto, K. Sugiyama, and Y. Takeuchi, “Tool setting of error compensation for multi-axis control ultra-precision machining,” Proc. of European Society for Precision Engineering & Nanotechnology, Vol.2, pp. 43-46, 2014.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jun. 03, 2024