single-au.php

IJAT Vol.9 No.6 pp. 612-618
doi: 10.20965/ijat.2015.p0612
(2015)

Review:

Fabrication Process of Antimony Telluride and Bismuth Telluride Micro Thermoelectric Generator

Mizue Mizoshiri*, Masashi Mikami**, and Kimihiro Ozaki**

*Graduate School of Engineering, Nagoya University
Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan

**National Institute of Advanced Industrial Science and Technology
2266-98 Anagahora, Moriyama-ku, Nagoya, Aichi 463-8560, Japan

Received:
June 4, 2015
Accepted:
October 1, 2015
Published:
November 5, 2015
Keywords:
micro thermoelectric generator, bismuth-telluride film, sputtering, lithography, lift-off process
Abstract
This paper describes the process of fabricating micro thermoelectric generators (μ-TEGs) based on antimony telluride (Sb-Te) and bismuth telluride (Bi-Te). These materials have excellent thermoelectric (TE) conversion properties. The deposition and patterning processes for thermoelectric films are key techniques in the fabrication of μ-TEGs. However, it is difficult to form TE micropatterns using conventional semiconductor technologies because Sb-Te and Bi-Te are brittle and difficult to etch. Therefore, a semiconductor fabrication process is developed for TE film patterning. Here, various processes for depositing Sb-Te and Bi-Te TE films are described. Then, the combinations of the deposition and patterning techniques are reviewed. Finally, the generation properties of the μ-TEGs are summarized.
Cite this article as:
M. Mizoshiri, M. Mikami, and K. Ozaki, “Fabrication Process of Antimony Telluride and Bismuth Telluride Micro Thermoelectric Generator,” Int. J. Automation Technol., Vol.9 No.6, pp. 612-618, 2015.
Data files:
References
  1. [1] M. Kishi, H. Nemoto, T. Hamao, M. Yamamoto, S. Sudou, M. Mandai, and S. Yamamoto, “Micro thermoelectric modules and their application to wristwatches as an energy source,” Eighteenth International Conference on Thermoelectrics Proceedings, ICT’99, pp. 301-307, 1999.
  2. [2] M. Nishibori, W. Shin, K. Tajima, L. F. Houlet, N. Izu, I. Matsubara, and N. Murayama, “Catalyst combustors with B-Doped SiGe/Au thermopile for micro-power-generation,” Jpn. J. Appl. Phys., Vol.45, pp. L1130-L1132, 2006.
  3. [3] J. Q. Guo, H. Y. Geng, T. Ochi, S. Suzuki, M. Kikuchi, Y. Yamaguchi, and S. Ito, “Development of Skutterudite Thermoelectric Materials and Modules,” J. Electron. Mater., Vol.41, pp. 1036-1042, 2012.
  4. [4] M. Mikami, K. Kobayashi, T. Kawada, K. Kubo, and N. Uchiyama, “Development and Evaluation of High-Strength Fe2VAl Thermoelectric Module,” Jpn. J. Apl. Phys., Vol.47, pp. 1512-1516, 2008.
  5. [5] J. Xie, C. Lee, M.-F. Wang, Y. Liu, and H. Feng, “Characterization of heavily doped polysilicon films for CMOS-MEMS thermoelectric power generators,” J. Micromech. Microeng., Vol.19, pp. 125029-1-125029-8, 2009.
  6. [6] S. M. Yang, T. Lee, and M. Cong, “Design and verification of a thermoelectric energy harvester with stacked polysilicon thermocouples by CMOS process,” Sens. And Actuators, A157, pp. 258-266, 2010.
  7. [7] L. M. Goncalves, C. Couto, P. Alpuim, A. G. Vöolklein, and J. H. Correia, “Optimization of thermoelectric properties on Bi2Te3 thin films deposited by thermal co-evaporation,” Thin Solid Films, Vol.518, pp. 2816-2821, 2010.
  8. [8] H. Zou, D. M. Rowe, and G. Min, “Preparation and characterization of p-type Sb2Te3 and n-type Bi2Te3 thin films grown by coevaporation,” J. Vac. Sci. Technol. A, Vol.19, pp. 899-903.
  9. [9] L. W. da Silva, M. kaviany, and C. Uher, “Thermoelectric performance of films in the bismuth-tellurium and antimony-tellurium systems,” J. Appl. Phys., Vol.97, pp. 114903, 2005.
  10. [10] D.-H. Kim, S.-H. Lee, J.-K. Kim, and G.-H. Lee, “Structure and electrical transport properties of bismuth thin films prepared by RF magnetron sputtering,” Appl. Surf. Sci., Vol.252, pp. 3525-3531, 2006.
  11. [11] D.-H. Kim, E. Byon, G.-H. Lee, and S. Cho, “Effect of deposition temperature on the structural and thermoelectric properties of bismuth telluride thin films grown by co-sputtering,” Thin Solid Films, Vol.510, pp. 148-153, 2006.
  12. [12] H. Huang, W. Luan, and S. Tu, “Influence of annealing on thermoelectric properties of bismuth telluride films grown via radio frequency magnetron sputtering,” Thin Solid Films, Vol.517, pp. 3731-3734, 2009.
  13. [13] M. Mizoshiri, M. Mikami, K. Ozaki, and K. Kobayashi, “Thin-Film Thermoelectric Modules for Power Generation Using Focused Solar Light,” J. Electron. Mater., Vol.41, pp. 1713-1719, 2012.
  14. [14] D. Bourgault, C. G. Garampon, N. Caillault, L. Carbone, and J. A. Aymami, “Thermoelectric properties of n-type Bi2Te2.7Se0.3 and p-type Bi0.5Sb1.5Te3 thin films deposited by direct current magnetron sputtering,” Thin Solid Films, Vol.516, pp. 8579-8583, 2008.
  15. [15] M. Mizoshiri, M. Mikami, and K. Ozaki, “p-Type Sb2Te3 and n-Tyep Bi2Te3 Films for Thermoelectric Modules Deposited by Thermally Assisted Sputtering Method,” Jpn. J. Appl. Phys., Vol.52, pp. 06GL07-1-06GL07-6, 2013.
  16. [16] K. Park, F. Xiao, B. Y. Yoo, Y. Rheen, and N. V. Myung, “Electrochemical deposition of thermoelectric SbxTey thin films and nanowires,” J. Alloys Compd., Vol.485, pp. 362-366, 2009.
  17. [17] Y. Miyazaki and T. Kajitani, “Preparation of Bi2Te3 films by electrodeposition,” J. Cryst. Growth, Vol.229, pp. 542-546.
  18. [18] M. Takashiri, S. Tanaka, M. Takiishi, M. Kihara, K. Miyazaki, and H. Tsukamoto, “Preparation and characterization of Bi0.4Te3.0Sb1.6 nanoparticles and their thin films,” J. Alloys Compd., Vol.462, pp. 351-355, 2008.
  19. [19] K. Kato, H. Hagino, and K. Miyazaki, “Fabrication of Bismuth Telluride Thermoelectric Films Containing Conductive Polymers Using a Printing Method,” J. Electron. Mater., Vol.42, pp. 1313-1318, 2013.
  20. [20] D. Madan, A. Chen, P. K. Wright, and W. Evans, “Dispenser printed composite thermoelectric thick films for thermoelectric generator applications,” J. Appl. Phys., Vol.109, pp. 034904-1-034904-6, 2011.
  21. [21] B. Huang, C. Lawrence, A. Gross, G.-S. Hwang, N. Ghofouri, S.-W. Lee, H. Kim, C.-P. Li, C. Uher, K. Najafi, and M. Kaviany, “Low-temperature characteirzation and micropatterning of coevaporated Bi2Te3 and Sb2Te3 films,” J. Appl. Phys., Vol.104, pp. 113710-1-113710-8, 2008.
  22. [22] G. J. Snyder, J. R. Lim, C.-K. Huang, and J.-P. Fleurial, “Thermoelectric microdevice fabricated by a MEMS-like electrochemical process,” Nature Mater., Vol.2, pp. 528-531, 2003.
  23. [23] L. M. Goncalves, J. G. Rocha, C. Couto, P. Alpuim, G. Min, D. M. Rowe, and J. H. Correia, “Fabrication of flexible thermoelectric microcoolers using planar thin-film technologies,” J. Micromech. Microeng., Vol.17, pp. S168-S173, 2007.
  24. [24] M. Mizoshiri, M. Mikami, and K. Ozaki, “Thermal-Photovoltaic Hybrid Solar Generator Using Thin-Film Thermoelectric Modules,” Jpn. J. Appl. Phys., Vol.51, pp. 06FL07-1-06FL07-5, 2012.
  25. [25] M. Mizoshiri, M. Mikami, and K. Ozaki, “The effect of Cr buffer layer thickness on voltage generatioin of thin-film thermoelectric modules,” Vol.23, pp. 115016-1-115016-9, 2013.
  26. [26] M. Mizoshiri, M. Mikami, K. Ozaki, M. Shikida, and S. Hata, “Lift-off patterning of thermoelectric thick films deposited by a thermally assisted sputtering method,” Appl. Phys. Express, Vol.7, pp. 057101-1-057101-4.
  27. [27] L. M. Goncalves, C. Couto, P. Alpuim, and J. H. Correia, “Thermoelectric micro converters for cooliing and energy-scavenging systems,” J. Micromech. Microeng., Vol.18, pp. 064008-1-064008-5, 2008.
  28. [28] J. P. Carmo, J. F. Ribeiro, M. F. Silva, L. M. Goncalves, and J. H. Correia, “Thermoelectric generator and solid-state battery for stand-alone microsystems,” J. Micromech. Microeng., Vol.20, pp. 085033-1-, 2010.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 19, 2024