single-au.php

IJAT Vol.9 No.4 pp. 381-386
doi: 10.20965/ijat.2015.p0381
(2015)

Paper:

Elimination of Gyro Drift by Using Reversal Measurement

Tatsuya Kume*, Masanori Satoh**, Tsuyoshi Suwada**, Kazuro Furukawa**, and Eiki Okuyama***

*Mechanical Engineering Centre, High Energy Accelerator Research Organization (KEK)
1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

**Accelerator Laboratory, High Energy Accelerator Research Organization (KEK)
1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

***Faculty of Engineering and Resource, Akita University
1-1 Tegata gakuen-machi, Akita 010-8502, Japan

Received:
January 15, 2015
Accepted:
June 17, 2015
Published:
July 5, 2015
Keywords:
gyro, drift, rate offset, reversal measurement, straightness
Abstract

We aim to realize a large-scale straightness evaluation using a gyro. It detects tangential angles to evaluate a profile without any references. However, fluctuations of angular signal, called gyro drift, are considered a major contributor of error. We adopted a reversal measurement for eliminating the drift. The reversal measurement has been widely used for eliminating stable error from ancient. Here, we periodically performed reversal measurements for eliminating drift of a commercially available fiber optic gyro (FOG) unit. As a result, an angle could be derived with a standard deviation of 0.4 mrad for 1 hour of repeated measurements with an interval of 60 s, even though the gyro has a drift of several mrad/h including the effects of the Earth’s rotation. This indicates that the reversal measurement is effective in reducing the drift.

Cite this article as:
T. Kume, M. Satoh, T. Suwada, K. Furukawa, and E. Okuyama, “Elimination of Gyro Drift by Using Reversal Measurement,” Int. J. Automation Technol., Vol.9, No.4, pp. 381-386, 2015.
Data files:
References
  1. [1]  I. Abe , N. Akasaka, M. Akemoto, S. Anami, A. Enomoto, et al., “The KEKB injector linac,” Nuclear Instruments and Methods A499, 167, 2003.
  2. [2]  http://www-superkekb.kek.jp/ [accessed Dec. 26, 2014]
  3. [3]  http://j-parc.jp/index-e.html [accessed Dec. 26, 2014]
  4. [4]  http://xfel.riken.jp/eng/index.html [accessed Dec. 26, 2014]
  5. [5]  http://home.web.cern.ch/topics/large-hadron-collider [accessed Dec. 26, 2014]
  6. [6]  http://www.linearcollider.org/ILC [accessed Dec. 26, 2014]
  7. [7]  W. B. Herrmannsfeldt, M. J. Lee, J. J. Spranza, and K. R. Trigger, “Precision Alignment Using a System of Large Rectangular Fresnel Lenses,” Appl. Opt., Vol.7, 995, 1968.
  8. [8]  D. K”amtner and J. Prenting, “Straight Line Reference System (SLRS) for the Adjustment of the X-Ray Free-Electron Laser (XFEL) at DESY,” the 9th International Workshop on Accelerator Alignment (IWAA2006), Menro Park CA USA, September 25-29, 2006.
  9. [9]  H. M. Durand, M. Anastasopoulos, S. Griffet, J. Kemppinen, V. Rude, and M. Sosin, “Validation of the CLIC Alignment Strategy on Short Range,” the 12th International Workshop on Accelerator Alignment (IWAA2012), Batavia IL USA, September 10-14, 2012.
  10. [10]  http://www-conf.slac.stanford.edu/iwaa/default.htm [accessed Dec. 26, 2014]
  11. [11]  T. Suwada, M. Satoh, S. Telada, and K. Minoshima, “Propagation and Stability Characteristics of a 500-m-long Laser-based Fiducial Line for High-precision Alignment of Long-distance Linear Accelerators,” Rev. Sci. Instrum., Vol.84, 093302, 2013.
  12. [12]  W. T. Estler, K. L. Edmundson, G. N. Peggs, and D. H. Parker, “Large-Scale Metrology – An Update,” CIRP Annals-Manufactureing Technology, Vol.51, No.2, 587, 2002.
  13. [13]  F. Franceschini, M. Galetto, D. Maisano, L. Mastrogiacomo, and B. Pralio, “Distributed Large-ScaleDimensional Metrology,” Springer.
  14. [14]  A. E. Ennos and M. S. Virdee, “High Accuracy Profile Measurement of Quasi-conical Mirror Surfaces by laser autocollimation,” Prec. Eng., Vol.4, No.5, 1982.
  15. [15]  G. Makosch and B. Drollinger, “Surface Profile Measurement with a Scanning Differential AC Interferometer,” Appl. Opt., Vol.23, 4544, 1984.
  16. [16]  J. Yellowhair and J. H. Burge, “Analysis of a Scanning Pentaprism System for Measurements of Large Flat Mirrors,” Appl. Opt., 46, Vol.35, 8466, 2007.
  17. [17]  J. Yellowhair and J. H. Burge, “Measurement of Optical Flatness Using Electronic Levels,” Opt. Engineering, Vol.47, No.2, 023604, 2008.
  18. [18]  S. G. Alcock, K. J. S. Sawhney, S. Scott, U. Pedersen, R. Walton, F. Siewert, T. Zeschke, F. Senf, T. Noll, and H. Lammert, “The Diamond-NOM:A Non-contact Profiler Capable of Characterizing Optical Figure Error with Sub-nanometre Repeatability,” Nuclear Instruments and Methods A616, pp. 224-228, 2010.
  19. [19]  K. Ishikawa, T. Takamura, M. Xiao, S. Takahashi, and K. Takamasu, “Profile Measurement of Aspheric Surfaces Using Scanning Deflectometry and Rotating Autocollimator with Wide Measuring range,” Meas. Sci. Technol., Vol.25, 064008, 2014.
  20. [20]  T. Kume, E. Okuyama, M. Satoh, T. Suwada, and K. Furukawa, “Large-scale Accelerator Alignment Using an Inclinometer,” Precision Engineering, Vol.37, pp. 825-830, 2013.
  21. [21]  T. Kume, M. Satoh, T. Suwada, K. Furukawa, and E. Okuyama, “Straightness evaluation using inclinometers with a pair of offset bars,” Precision Engineering, Vol.39, pp. 173-178, 2015.
  22. [22]  C. J. Evans, R. J. Hocken, and W. T. Estler, “Self-calibration: reversal, redundancy, errorseparation, and ‘Absolute testing’,” CIRP Annual Manufacturing Technology, Vol.45, pp. 617-634, 1996.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Dec. 10, 2019