single-au.php

IJAT Vol.8 No.5 pp. 745-753
doi: 10.20965/ijat.2014.p0745
(2014)

Paper:

Analyzing the Sustainability of Bimetallic Components

A. M. M. Sharif Ullah, Akiyoshi Fuji, Akihiko Kubo,
and Jun’ichi Tamaki

Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan

Received:
June 13, 2014
Accepted:
August 22, 2014
Published:
September 5, 2014
Keywords:
sustainable manufacturing, bimetallic component, energy efficiency, material efficiency, component efficiency
Abstract
This study describes a methodology to evaluate the sustainability of a bimetallic component putting emphasis on energy, material, and component efficiencies. Energy efficiency deals with the direct energy consumptions while manufacturing a bimetallic component. Material efficiency deals with the yield, lightweighting, cost, and CO2 footprint of primary material production of the materials used in the component. Component efficiency deals with the degree of alteration of functional properties of the component (surface-finish, strength, and alike). Numerical examples are described based on a case of a bimetallic component made of commercially pure Aluminum and Titanium. It is found that the material efficiency is effective than the energy efficiency in enhancing the sustainability, whereas enhancing component efficiency remains a challenge. The outcomes of this study will help make informed decisions in developing sustainable bimetallic components.
Cite this article as:
A. Ullah, A. Fuji, A. Kubo, and J. Tamaki, “Analyzing the Sustainability of Bimetallic Components,” Int. J. Automation Technol., Vol.8 No.5, pp. 745-753, 2014.
Data files:
References
  1. [1] Kugler Bimetal, URL,
    http://www.bimetal.ch/en/welcome/ [accessed on 12 August, 2014].
  2. [2] Interface welding, URL,
    http://www.interfacewelding.com [accessed on June 12, 2014].
  3. [3] Manufacturing Technology, Inc., URL,
    http://www.mtiwelding.com/ [accessed on June 12, 2014].
  4. [4] J. R. Stephenson, A. M. Moulin, M. E. Welland, “Bimaterials thermometers,” J. G. Webster, (Ed.), The measurement, instrumentation, and sensors handbook, CRC Press, New York, Chapter 32.1., 1998.
  5. [5] L. R. O’Hare, “Bimetallic solar engine,” USA Patents, US4551978 A, 1985.
  6. [6] P. Eslami, A. K. Taheri, and M. Zebardast, “A Comparison Between Cold-Welded and Diffusion-Bonded Al/Cu Bimetallic Rods Produced by ECAE Process,” J. of Materials Engineering and Performance, Vol.22, Issue 10, pp. 3014-3023, 2013.
  7. [7] S. Dawson, “Compacted Graphite Iron – A Material Solution for Modern Engine Design,” SAE Technical Paper, 2011-01-1083, 2011.
  8. [8] A. Malakizadi, I. Sadik, and L. Nyborg, “Wear Mechanism of CBN Inserts during Machining of Bimetal Aluminum-Grey Cast Iron Engine Block,” Procedia CIRP, Vol.8, pp. 188-193, 2013.
  9. [9] A. K. Motarjemi, M. Koçak, and V. Ventzke, “Mechanical and fracture characterization of a bi-material steel plate,” Int. J. of Pressure Vessels and Piping, Vol.79, Issue 3, pp. 181-191, 2002.
  10. [10] J. Laermans and J. Banker, “Large Titanium Clad Pressure Vessels: Design, Manufacture, and Fabrication Issues,” Proc. of the Corrosion Applications Conference, Paper 22, pp. 157-165, 2003.
  11. [11] T. G. Gutowski, M. S. Branham, J. B. Dahmus, A. J. Jones, and A. Thiriez, “Thermodynamic Analysis of Resources Used in Manufacturing Processes,” Environmental Science and Technology, Vol.43, No.5, pp. 1584-1590, 4, 2009.
  12. [12] S. Ogawa, S. Okumura, T. Hirogaki, E. Aoyama, and Y. Onchi, “Investigation of Eco-friendly Fixed-Abrasive Polishing with Compact Robot,” Advanced Materials Research, Vols.126-128, No.415, pp. 415-420, 2010.
  13. [13] H. Hibino, T. Sakuma, and M. Yamaguchi, “Evaluation System for Energy Consumption and Productivity in Manufacturing System Simulation,” Int. J. of Automation Technology, Vol.6, No.3, pp. 279-288, 2012.
  14. [14] M. Matsuda and F. Kimura, “Configuration of the Digital Eco-Factory for Green Production,” Int. J. of Automation Technology, Vol.6, No.3, pp. 289-295, 2012.
  15. [15] I. Inasaki, “Towards symbiotic machining processes,” Int. J. of Precision Engineering and Manufacturing, Vol.13, Issue 7, pp. 1053-1057, 2012.
  16. [16] N. Nakamura, K. Mandai, S. Fukushige, and Y. Umeda, “Proposal of a Methodology for Supporting Eco-Business Planning,” Int. J. of Automation Technology, Vol.6, No.3, pp. 264-271, 2012.
  17. [17] R. L. Milford, S. Pauliuk, J. M. Allwood, and D. B. Muller, “The Roles of Energy and Material Efficiency in Meeting Steel Industry CO2 Targets,” Environmental Science and Technology, Vol.47, No.5, pp. 3455-3462, 2013.
  18. [18] J. M. Allwood, J. M. Cullen, R. L. Milford, “Options for achieving a 50% cut in industrial carbon emissions by 2050,” Environmental Science and Technology, Vol.44, No.6, pp. 1888-1894, 2010.
  19. [19] J. M. Allwood, M. F. Ashby, T. G. Gutowski, and E. Worrell, “Material efficiency: A white paper,” Resources Conservation and Recycling, Vol.55, Issue 3, pp. 362-381, 2011.
  20. [20] R. Ng, Z. Yeo, C. Wai, P. Shi, F. Rugrungruang, and B. Song, “An Algorithmic Approach to Streamlining Product Carbon Footprint Quantification: A Case Study on Sheet Metal Parts,” Int. J. of Automation Technology, Vol.6, No.3, pp. 312-321, 2012.
  21. [21] S. Kondoh, N. Mishima, Y. Hotta, K. Watari, T. Kurita, and K. Masui, “Total Performance Analysis of Manufacturing Processes,” Int. J. of Automation Technology, Vol.3, No.1, pp. 56-62, 2009.
  22. [22] H. Narita and H. Fujimoto, “Analysis of Environmental Impact due to Machine Tool Operation,” Int. J. of Automation Technology, Vol.3, No.1, pp. 49-55, 2009.
  23. [23] A. M. M. S. Ullah, K. Kitajima, T. Akamatsu, M. Furuno, J. Tamaki, and A. Kubo, “On Some Eco-indicators of Cutting Tools,” Proc. of the ASME 2011 Int. Manufacturing Science and Engineering Conf. (MSEC2011), Oregon, USA, pp. 105-110, doi: 10.1115/MSEC2011-50071, 2011.
  24. [24] M. M. Rashid, A. M. M. S. Ullah, J. Tamaki, and A. Kubo, “Evaluation of Hard Materials using Eco-Attributes,” Advanced Materials Research, Vol.325, pp. 693-698, 2011.
  25. [25] A. M. M. S. Ullah, H. Hashimoto, F. Hayashi, R. Omori, Y. Nagara, A. Kubo, and J. Tamaki, “Comparison between wooden and conventional prototyping: An eco-manufacturing perspective,” In: Design for Innovative Value Towards a Sustainable Society, M. Matsumoto, Y. Umeda, K. Masui, and S. Fukushige, (Eds.), pp. 877-881, 2012.
  26. [26] A. M. M. S. Ullah, H. Hashimoto, A. Kubo, and J. Tamaki, “Sustainability analysis of rapid prototyping: material/resource and process perspectives,” Int. J. of Sustainable Manufacturing, Vol.3, No.1, pp. 20-36, 2013.
  27. [27] Y. Nagara, , A. M. M. S. Ullah, A. Fuji, J. Tamaki, and A. Kubo, “Surface finish characteristics of bimetallic parts,” The Proc. of ICMDT2013, 22-25 May 2013, Busan, South Korea, pp. 93-94.
  28. [28] A. Fuji, H. Kokawa, and Y.-C. Kim, “A Study of Stress-strain, Acoustic Wavevelocity and Hardness Across Joint Interface of Pure Ti/Pure Al Friction Weld Joint,” Quarterly J. of the Japan Welding Society, Vol.18, No.1, pp. 617-627, 2000. (in Japanese)
  29. [29] Y.-C. Kim and A. Fuji, “Factors dominating joint characteristics in Ti-Al friction welding,” Science and Technology of Welding and Joining, Vol.7, Issue 3, pp. 149-154, 2002.
  30. [30] S. D. Meshram, T. Mohandas, and G. R. Madhusudhan, “Friction welding of dissimilar pure metals,” J. of Materials Processing Technology, Vol.184, Issues 1-3, pp. 330-337, 2007.
  31. [31] A. Ambroziak, M. Winnicki, P. Laska, M. Lachowicz, M. Zwierzchowski, and J. Leśniewski, “Examination of Friction Coefficient in Friction Welding Process of Tubular Steel Elements,” Archives of Metallurgy and Materials, Vol.56, Issue 4, pp. 975-980, 2001.
  32. [32] CES Selector, Version 5.1.0, Granta Design Limited, UK.
  33. [33] ISO 25178 2, 2012, “Geometrical product specifications (GPS) – Surface texture: Areal – Part 2: Terms, definitions and surface texture parameters,” International Organization for Standardization.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 22, 2024