single-au.php

IJAT Vol.7 No.6 pp. 714-719
doi: 10.20965/ijat.2013.p0714
(2013)

Review:

An Electrostatic Force Probe for Surface Profile Measurement in Noncontact Condition

So Ito*, Zhigang Jia*, Shigeaki Goto*,
Keiichiro Hosobuchi*, Yuki Shimizu*, Gaofa He**,
and Wei Gao*

*Department of Nanomechanics, Tohoku University, 6-6-01 Aramaki, Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan

**Chongqing University of Science and Technology, 24-5 Shenrenghui Building, Yangjiaping Heng Street, Jiulongpo District, Chongqing, China

Received:
April 1, 2013
Accepted:
July 9, 2013
Published:
November 5, 2013
Keywords:
nano metrology, electrostatic force probe, surface profile measurement, scanning probe microscope, scanning electrostatic force microscope
Abstract
A scanning probe microscope with an electrostatic force probe has been introduced for the dimensional measurement of the surface profile measurement. Since the intensity of the electrostatic force is strongly depended on the distance between a probe and the sample surface, the electrostatic force probe can be used for the measurement of the surface profile in non contact condition. In order to detect the electrostatic force between the probe tip and the sample surface, a method of the frequency modulation AFM has been employed. When the bias voltage is applied between the probe and the surface, the resonance frequency of the probe oscillation is shifted owing to the electrostatic force. In this paper, the basic characteristics of the electrostatic probe are investigated, experimentally. And then, the absolute distance between the probe tip and the sample surface is calculated by using the differences of the frequency shift of the probe. Finally, the measurement of surface profile is demonstrated in non-contact condition by utilizing the developed electrostatic force probe.
Cite this article as:
S. Ito, Z. Jia, S. Goto, K. Hosobuchi, Y. Shimizu, G. He, and W. Gao, “An Electrostatic Force Probe for Surface Profile Measurement in Noncontact Condition,” Int. J. Automation Technol., Vol.7 No.6, pp. 714-719, 2013.
Data files:
References
  1. [1] E. G. Loewen, M. Neviere, and D. Maystre, “Grating Efficiency Theory as It Applies to Blazed and Holographic Gratings,” Appl. Opt., Vol.16, pp. 2711-2721, 1977.
  2. [2] U. Pettersson and S. Jacobson, “Textured surfaces for improved lubrication at high pressure and low sliding speed of roller/piston in hydraulic motors,” Tribology Int., Vol.40, pp. 355-359, 2007.
  3. [3] H. Kim, Y. J. Lim, B. Yang, K. Choi, and B. Lee, “Geometrical analysis of optical transmission characteristics of prism sheet layers,” Opt. Eng., Vol.44, 128001, 2005.
  4. [4] G. Bining, C. F. Quate, and Ch. Gerber, “Atomic Force Microscope,” Phys. Rev. Lett., Vol.56, pp. 930-933, 1986.
  5. [5] G. Binnig, H. Rohrer, Ch. Gerber, and E.Weibel, “urface Studies by Scanning Tunneling Microscopy,” Phys. Rev. Lett., Vol.49, pp. 57-60S, 1982.
  6. [6] R. Nishi, I. Houda, T. Aramata, Y. Sugawara, and S. Morita, “Phase change detection of attractive force gradient by using a quartz resonator in noncontact atomic force microscopy,” Appl. Phys. Sci., Vol.157, pp. 332-326, 2000.
  7. [7] F. J. Giessibl, “Atomic resolution on Si(111)-(7 × 7). by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork,” Appl. Phys. Lett., Vol.76, pp. 1470-1472, 2000.
  8. [8] F. J. Giessibl, H. Bielefeldt, S. Hembacher, and J. Mannhart, “Calculation of the optimal imaging parameters for frequency modulation atomic force microscopy,” Appl. Surf. Sci., Vol.140, pp. 352-357, 1999.
  9. [9] T. R. Albrecht, P. Grtitter, D. Horne, and D. Rugar, “Frequency modulation detection using highdkantilevers for enhanced force microscope sensitivity,” J. Appl. Phys., Vol.69, pp. 668-673, 1991.
  10. [10] B. Gotsmann and H. Fuchs, “Dynamic AFM using the FM technique with constant excitation amplitude,” Appl. Surf. Sci., Vol.188, pp. 355-362, 2002.
  11. [11] C. Barth, A. S. Foster, C. R. Henry, and A. L. Shluger, “Recent Trends in Surface Characterization and Chemistry with High-Resolution Scanning Force Methods,” Advanced Materials, Vol.23, pp. 477-501, 2011.
  12. [12] M. Heyde, M. Sterrer, H. P. Rust, and H. J. Freund, “Atomic resolution on MgO (001) by atomic force microscopy using a double quartz tuning fork sensor at low-temperature and ultrahigh vacuum,” Appl. Phys. Lett., Vol.87, pp. 083104, 2005.
  13. [13] T. Ichii, M. Fujimura, M. Negami, K. Murase, and H. Sugimura, “Frequency Modulation Atomic Force Microscopy in Ionic Liquid Using Quartz Tuning Fork Sensors,” Jpn. J. Appl. Phys., Vol.51, pp. 08KB08, 2012.
  14. [14] S. Ito and F. Iwata, “Nanometer-scale Deposition of Metal Plating Using a Nanopipette Probe in Liquid Condition,” Jpn. J. Appl. Phys., Vol.50, pp. 08LB15, 2011.
  15. [15] W. Gao, S. Goto, K. Hosobuchi, S. Ito, and Y. Shimizu, “A noncontact scanning electrostatic force microscope for surface profile measurement,” Annals of the CIRP, Vol.61, pp. 471-474, 2012.
  16. [16] S. Belaidi, P. Girard, and G. Leveque, “Electrostatic forces acting on the tip in atomic force microscopy: Modelization and comparison with analytic expressions,” J. Appl. Phys., Vol.81, pp. 1023-1030, 1997.
  17. [17] S. Goto, K. Hosobuchi, and W. Gao, “An ultra-precision scanning tunneling microscope Z-scanner for surface profile measurement of large amplitude micro-structures,” Meas. Sci. Technol., Vol.22, pp. 085101, 2011.
  18. [18] M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, “Kelvin probe force microscopy,” Appl. Phys. Lett., Vol.58, pp. 2921-2923, 1991.
  19. [19] M. Nonnenmacher and H. K. Wickramasinghe, “Optical absorption spectroscopy by scanning force microscopy,” Ultramicroscopy, Vol.42, pp. 351-354, 1991.
  20. [20] F. J. Giessibl, “AFM’s path to atomic resolution,” materialstoday, pp. 32-41, 2005.
  21. [21] K. Morita, Y. Sasagawa, Y. Murai, Y. Sugimoto, M. Abe, and S. Morita, “Fabrication of Quartz Cantilevers for Small-Amplitude Dynamic Force Microscopy Using an Optical Deflection Sensor,” Jpa. J. Appl. Phys., Vol.50, pp. 08LB12, 2011.
  22. [22] K. R. Virwani, A. P. Malshe, and K. P. Rajurkar, “Understanding Sub-20 nm Breakdown Behavior of Liquid Dielectrics,” Phys. Rev. Lett., Vol.99, pp. 017601-1-4, 2007.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 22, 2024