single-au.php

IJAT Vol.6 No.2 pp. 125-136
doi: 10.20965/ijat.2012.p0125
(2012)

Paper:

Experimental Evaluation of the Thermal Machine Tool Behavior for Model Updating

Jörg E. Franke*, Tobias Maier**, Franziska Schäfer*,
and Michael F. Zaeh**

*Institute for Manufacturing Automation and Production Systems, Friedrich-Alexander-University, Erlangen-Nuremberg, Egerlandstr. 7-9, D-91058 Erlangen, Germany

**Institute for Machine Tools and Industrial Management, Technische Universitaet Muenchen, Boltzmannstr. 15, D-85748 Garching, Germany

Received:
September 15, 2011
Accepted:
November 25, 2011
Published:
March 5, 2012
Keywords:
thermal analysis, finite element analysis, thermal error analysis, temperature measurement, cutting process
Abstract

Thermally induced deviations are one of the most important issues for modern machine tools’ accuracy. Therefore, the numerical determination of the thermal machine behavior is becoming an essential part of the development process. The thermal models are highly dependent on the applied loads and boundary conditions. The experimental determination of the thermal machine tool behavior is therefore a critical point. Consequently, this paper presents an experimental evaluation of the thermal behavior of machine tools for model updating. In order to identify the thermal machine properties, temperature distributions as well as thermal displacements were detected. The experiments addressed the thermal influence of environmental parameters, the heat generation of main and feed drives and the cutting process. The tests were carried out on two different machine types, a lathe and a milling machine. Specific machining tasks were developed for each analysis to assure realistic load cases. The temperature and displacement measurements presented in this paper provide a strong parameter base for future thermal simulation models.

Cite this article as:
J. Franke, T. Maier, F. Schäfer, and <. Zaeh, “Experimental Evaluation of the Thermal Machine Tool Behavior for Model Updating,” Int. J. Automation Technol., Vol.6, No.2, pp. 125-136, 2012.
Data files:
References
  1. [1] J. Bryan, “International status of thermal error research,” Annals of the CIRP, Vol.39, No.2, pp. 645-656, 1990.
  2. [2] M. F. Zaeh and T. Maier, “FE Analysis for Thermal Behaviour of Machine Tools,” Y. Ito (Ed.), Thermal Deformation in Machine Tools, McGraw-Hill, New York, pp. 143-177, ISBN: 978-0-07-163517-2, 2010.
  3. [3] K. Großmann and G. Jungnickel, “Prozessgerechte Bewertung des thermischen Verhaltens von Werkzeugmaschinen,” Lehrstuhl für Werkzeugmaschinen, Institut für Werkzeugmaschinen und Steuerungstechnik, Dresden, ISBN: 3-86005-547-X, 2006.
  4. [4] S. Gleich, “Simulation des thermischen Verhaltens spanender Werkzeugmaschinen in der Entwurfsphase,” Dissertation TU Chemnitz, Chemnitz, 2008.
  5. [5] Forschungsvereinigung Werkzeugmaschinen und Fertigungstechnik e.V., “Verbesserung der Simulationsgenauigkeit beim Wärmegang an Werkzeugmaschinen,” FWF Forschungsbericht, 2009.
  6. [6] M. F. Zäh and T. Maier, “Simulation des thermischen Maschinenverhaltens,” ZWF 105, 7-8, pp. 655-659, 2010.
  7. [7] M. Weck and K. Wundram, “Verbesserung der Genauigkeit thermischer Simulationen von Maschinenelementen und Baugruppen,” Konstruktion, 50, 7-8, pp. 26-30, 1998.
  8. [8] J. Franke, A. Kühl, and N. A. A. Martin, “Thermische Simulation von Werkzeugmaschinen zur Verbesserung der Fertigungsgenauigkeit,” G. Zülch and P. Stock (Eds.), “Integrationsaspekte der Simulation: Technik, Organisiation und Personal,” KIT Scientific Publishing, Karlsruhe, pp. 237-244, ISBN: 978-3-86644-558-1, 2010.
  9. [9] M. Weck and C. Brecher, “Werkzeugmaschinen 2 – Konstruktion und Berechnung,” 8., neu bearb., Auflage, Springer-Verlag, Berlin, ISBN: 3-540-22502-1, 2006.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Dec. 10, 2019