single-au.php

IJAT Vol.3 No.5 pp. 509-513
doi: 10.20965/ijat.2009.p0509
(2009)

Review:

Manufacturing of Artificial Bones Using 3D Inkjet Printing Technology

Ung-il Chung/Yuichi Tei

Department of Bioengineering, The University of Tokyo Graduate Schools of Engineering and Medicine & Division of Tissue Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Received:
June 24, 2009
Accepted:
July 17, 2009
Published:
September 5, 2009
Keywords:
tissue engineering, scaffold, bone, calcium phosphate, inkjet printing
Abstract

The performance of the scaffolds holds the key to the realization of tissue engineering in clinical settings. By precisely controlling the 3D shape of the scaffolds using the inkjet printing technology, we have significantly improved the performance of the artificial bones, which have good shape compatibility, resultant reduction in the operation time and invasiveness, and resultant speedy union with the host bone tissues. We conclude that 3D shape control is vital to the performance of the scaffolds. We propose that it is advisable to consider at least once controlling the 3D shape of the scaffold by optimizing the design and manufacturing method, before resorting to the complex, expensive and high-risk use of growth factors and cells.

Cite this article as:
U. Tei, “Manufacturing of Artificial Bones Using 3D Inkjet Printing Technology,” Int. J. Automation Technol., Vol.3, No.5, pp. 509-513, 2009.
Data files:
References
  1. [1]R. P. Lanza, R. Langer, and J. Vacanti (Eds.), “Principles of Tissue Engineering,” Academic Press, San Diego, 2000.
  2. [2] L. Moroni, J. R. de Wijn, and C. A. van Blitterswijk, “Integrating novel technologies to fabricate smart scaffolds,” J Biomater Sci Polym Ed 19(5), 543-72, 2008.
  3. [3]S. W. Herring and P. Ochareon, “Bone-special problems of the craniofacial region,” Orthod Craniofac Res 8, 174-82, 2005.
  4. [4]P. Tessier, H. Kawamoto, D. Matthews, J. Posnick, Y. Raulo, J. F. Tulasne, and S. A. Wolfe, “Autogenous bone grafts and bone substitutes - tools and techniques: I. A 20,000-case experience in maxillofacial and craniofacial surgery,” Plast Reconstr Surg 116, 6S-24S, 2005.
  5. [5]B. L. Eppley, W. S. Pietrzak, and M. W. Blanton, “Allograft and alloplastic bone substitutes: a review of science and technology for the craniomaxillofacial surgeon,” J. Craniofac. Surg., 16, 981-9, 2005.
  6. [6]M. Hallman and A. Thor, “Bone substitutes and growth factors as an alternative/complement to autogenous bone for grafting in implant dentistry,” Periodontol 47, 172-92, 2008.
  7. [7]M. Hatoko, H. Tada, A. Tanaka, S. Yurugi, K. Niitsuma, and H. Iioka, “The use of calcium phosphate cement paste for the correction of the depressed nose deformity,” J Craniofac Surg 16, 327-31, 2005.
  8. [8]S. Tomita, S. Molloy, L. E. Jasper, M. Abe, and S. M. Belkoff, “Biomechanical comparison of kyphoplasty with different bone cements,” Spine 29, 1203-7, 2004.
  9. [9] S. V. Dorozhkin and M. Epple, “Biological and medical significance of calcium phosphates,” Angew Chem Int Ed Engl 41, 3130-46, 2002.
  10. [10] E. Fischer-Brandies and E. Dielert, “Clinical use of tricalciumphosphate and hydroxyapatite in maxillofacial surgery,” J. Oral Implantol, 12, 40-4, 1985.
  11. [11] B. L. Eppley, “Craniofacial reconstruction with computer-generated HTR patient-matched implants: use in primary bony tumor excision,” J Craniofac Surg 13, 650-7, 2002.
  12. [12] H. Tada, M. Hatoko, A. Tanaka, M. Kuwahara, K. Mashiba, S. Yurugi, H. Iioka, and K. Niitsuma, “Preshaped hydroxyapatite tricalcium-phosphate implant using three-dimensional computed tomography in the reconstruction of bone deformities of craniomaxillofacial region,” J Craniofac Surg 13, 287-92, 2002.
  13. [13] S. Karashima, A. Takeuchi, S. Matsuya, K. I. Udoh, K. Koyano, and K. Ishikawa, “Fabrication of low-crystallinity hydroxyapatite foam based on the setting reaction of alpha-tricalcium phosphate foam,” J Biomed Mater Res A 88, 628-633, 2009.
  14. [14] W. Y. Yeong, C. K. Chua, K. F. Leong, and M. Chandrasekaran, “Rapid prototyping in tissue engineering: challenges and potential,” Trends Biotechnol 22, 643-52, 2004.
  15. [15] M. P. Groover, “Fundamentals of Modern Manufacturing,” John Wiley & Sons, Inc., Hoboken, 2007.
  16. [16] S. J. Hollister, “Porous scaffold design for tissue engineering,” Nat Mater 4, 518-24, 2005.
  17. [17] P. F. Jacobs (Ed.), “Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography,” McGraw-Hill, New York, 1992.
  18. [18] I. Ono, K. Abe, S. Shiotani, and Y. Hirayama, “Producing a full-scale model from computed tomographic data with the rapid prototyping technique using the binder jet method: a comparison with the laser lithography method using a dry skull,” J Craniofac Surg 11, 527-37, 2000.
  19. [19] E. Sachlos and J. T. Czernuszka, “Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds,” Eur Cell Mater 5, 29-39, 2003.
  20. [20] S. M. Peltola, F. P. Melchels, D. W. Grijpma, and M. Kellomaki, “A review of rapid prototyping techniques for tissue engineering purposes,” Ann Med 40, 268-80, 2008.
  21. [21] R. Noorani, “Rapid Prototyping,” John Wiley & Sons, Inc., Hoboken, 2006.
  22. [22] K. W. Lee, S. Wang, B. C. Fox, E. L. Ritman, M. J. Yaszemski, and L. Lu, “Poly (propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters,” Biomacromolecules 8, 1077-84, 2007.
  23. [23] D. W. Hutmacher and S. Cool, “Concepts of scaffold-based tissue engineering - the rationale to use solid free-form fabrication techniques,” J. Cell Mol. Med. 11, 654-69, 2007.
  24. [24] M. H. Smith, C. L. Flanagan, J. M. Kemppainen, J. A. Sack, H. Chung, S. Das, S. J. Hollister, and S. E. Feinberg, “Computed tomography-based tissue-engineered scaffolds in craniomaxillofacial surgery,” Int J Med Robot 3, 207-16, 2007.
  25. [25] K. Igawa, M. Mochizuki, O. Sugimori, K. Shimizu, K. Yamazawa, H. Kawaguchi, K. Nakamura, T. Takato, R. Nishimura, S. Suzuki, M. Anzai, U. Chung, and N. Sasaki, “Tailor-made tricalcium phosphate bone implant directly fabricated by a three-dimensional ink-jet printer,” J Artif Organs 9, 234-40, 2006.
  26. [26] F. C. Fierz, F. Beckmann, M. Huser, S. H. Irsen, B. Leukers, F. Witte, O. Degistirici, A. Andronache, M. Thie, and B. Müller, “The morphology of anisotropic 3D-printed hydroxyapatite scaffolds,” Biomaterials 29, 3799-806, 2008.
  27. [27] C. L. Camire, P. Nevsten, L. Lidgren, and I. McCarthy, “The effect of crystallinity on strength development of alpha-TCP bone substitutes,” J Biomed Mater Res B Appl Biomater 79, 159-65, 2006.
  28. [28] M. Yamada, M. Shiota, Y. Yamashita, and S. Kasugai, “Histological and histomorphometrical comparative study of the degradation and osteoconductive characteristics of alpha- and beta-tricalcium phosphate in block grafts,” J Biomed Mater Res B Appl Biomater 82, 139-48, 2007.
  29. [29] T. Okuda, K. Ioku, I. Yonezawa, H. Minagi, Y. Gonda, G. Kawachi, M. Kamitakahara, Y. Shibata, H. Murayama, H. Kurosawa, and T. Ikeda, “The slow resorption with replacement by bone of a hydrothermally synthesized pure calcium-deficient hydroxyapatite,” Biomaterials 29, 2719-28, 2008.
  30. [30] A. J. Ambard and L. Mueninghoff, “Calcium phosphate cement: review of mechanical and biological properties,” J Prosthodont 15, 321-8, 2006.
  31. [31] H. Saijo, K. Igawa, K. Kanno, Y. Mori, K. Kondo, K. Shimizu, S. Suzuki, D. Chikazu, M. Iino, M. Anzai, N. Sasaki, U. Chung, and T. Takato, “Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology,” J Artif Organs 2009 (in press).

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Nov. 08, 2019