IJAT Vol.3 No.3 pp. 298-303
doi: 10.20965/ijat.2009.p0298


Linear Measurement and Training Device for Leg Evaluation

Katsushi Furutani*, Hiroshi Tachi**, and Mitsuru Saito**

*Department of Advanced Science and Technology, Toyota Technological Institute
12-1 Hisakata 2-chome, Tempaku-ku, Nagoya 468-8511, Japan

**Graduate School of Engineering, Toyota Technological Institute
12-1 Hisakata 2-chome, Tempaku-ku, Nagoya 468-8511, Japan

December 28, 2008
January 18, 2009
May 5, 2009
linear motor, impedance control, modeling, skeletal muscle

The measuring device we developed to evaluate the leg and use in physical training is driven by a linear motor using impedance or proportional-integral control. The leg is considered a second-order system in the short range. For a leg flexed at a constant speed, we calculated parameters from measured force, displacement, and acceleration and measured parameter transitions in exercise. While the damping coefficient remained almost flat during exercise, the spring constant changed.

Cite this article as:
K. Furutani, H. Tachi, and M. Saito, “Linear Measurement and Training Device for Leg Evaluation,” Int. J. Automation Technol., Vol.3 No.3, pp. 298-303, 2009.
Data files:
  1. [1] T. Takasaki, R. Hirata, S. Okada, N. Hiraki, Y. Okajima, N. Tanaka, S. Uchida, Y. Tomita, and T. Horiuchi, “Rehabilitation Robot for Stroke Patients (TEM, Therapeutic Exercise Machine),” Proc. 32nd Int. Sympo. Rob., Seoul, Korea, pp. 19-21, 2001.
  2. [2] K. Bharadwaj, T. G. Sugar, J. B. Koeneman, and E. J. Koeneman, “Design of a Robotic Gait Trainer using Spring Over Muscle Actuators for Ankle Stroke Rehabilitation,” Trans. ASME, J. Biomechanical Eng., Vol.127, No.6, pp. 1009-1013, 2005.
  3. [3] J. M. Dolan, M. B. Friedman, and M. L. Nagurka, “Dynamic and loaded impedance components in the maintenance of human arm posture,” IEEE Trans. Syst., Man Cybernetics, Vol.23, No.3, pp. 698-709, 1993.
  4. [4] R. Gurram, S. Rakheja, and A. J. Brammer, “Driving-point mechanical impedance of the human hand-arm system: Synthesis and model development,” J. Sound Vib., Vol.180, No.3, pp. 437-458, 1995.
  5. [5] A. Z. Hajian and R. D. Howe, “Identification of the mechanical impedance at the human finger tip,” Trans. ASME, J. Biomedical Eng., Vol.119, No.2, pp. 109-114, 1997.
  6. [6] D. R. Coles, B. S. S. Kidd, and W. Moffat, “Distensibility of blood vessels of the human calf determined by local application of subatmospheric pressure,” J. Appl. Physiology, Vol.10, pp. 461-468, 1957.
  7. [7] V. A. Convertino, “Endurance exercise training: conditions of enhanced hemodynamic responses and tolerance to LBNP,” Medicine & Science in Sports & Exercise, Vol.25, pp. 705-712, 1993.
  8. [8] M. Ichinose, M. Saito, A. Kitano, K. Hayashi, N. Kondo, and T. Nishiyasu, “Modulation of arterial baroreflex dynamic response during mild orthostatic stress in humans,” J. Physiology, Vol.557, Pt. 1, pp. 321-330, 2004.
  9. [9] N. Hogani, “Impedance Control; An approach to manipulation Parts I-III,” Trans. ASME, J. Dyn. Syst., Meas. Control, Vol.107, No.1, pp. 1-24, 1985.
  10. [10] R. F. Chandler, C. E. Clauser, J. T. McCornville, H. M. Reynolds, and J. W. Young, “Investigation of the inertial properties of the human body,” National Technical Information Services, Virginia, USA, pp. 84-96, 1975.
  11. [11] M. Ikai, S. Ebashi, T. Iizuka, and M. Takaishi, “Taiiku Kagaku Jiten,” Dai-ichi Hoki, Tokyo, Japan, pp. 399-407, 1972 (in Japanese).
  12. [12] G. H. Bell, D. Emslie-Smith, and C. R. Paterson, “Textbook of Physiology (10th Edition),” Churchill Livingstone, New York, NY, USA, pp. 325-346, 1980.
  13. [13] R. M. Berne and M. N. Levy, “Physiology,” C. V. Mosby, St. Louis, MO, USA, pp. 387-403, 1983.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 19, 2024