Paper:
Linear Measurement and Training Device for Leg Evaluation
Katsushi Furutani*, Hiroshi Tachi**, and Mitsuru Saito**
*Department of Advanced Science and Technology, Toyota Technological Institute
12-1 Hisakata 2-chome, Tempaku-ku, Nagoya 468-8511, Japan
**Graduate School of Engineering, Toyota Technological Institute
12-1 Hisakata 2-chome, Tempaku-ku, Nagoya 468-8511, Japan
The measuring device we developed to evaluate the leg and use in physical training is driven by a linear motor using impedance or proportional-integral control. The leg is considered a second-order system in the short range. For a leg flexed at a constant speed, we calculated parameters from measured force, displacement, and acceleration and measured parameter transitions in exercise. While the damping coefficient remained almost flat during exercise, the spring constant changed.
- [1] T. Takasaki, R. Hirata, S. Okada, N. Hiraki, Y. Okajima, N. Tanaka, S. Uchida, Y. Tomita, and T. Horiuchi, “Rehabilitation Robot for Stroke Patients (TEM, Therapeutic Exercise Machine),” Proc. 32nd Int. Sympo. Rob., Seoul, Korea, pp. 19-21, 2001.
- [2] K. Bharadwaj, T. G. Sugar, J. B. Koeneman, and E. J. Koeneman, “Design of a Robotic Gait Trainer using Spring Over Muscle Actuators for Ankle Stroke Rehabilitation,” Trans. ASME, J. Biomechanical Eng., Vol.127, No.6, pp. 1009-1013, 2005.
- [3] J. M. Dolan, M. B. Friedman, and M. L. Nagurka, “Dynamic and loaded impedance components in the maintenance of human arm posture,” IEEE Trans. Syst., Man Cybernetics, Vol.23, No.3, pp. 698-709, 1993.
- [4] R. Gurram, S. Rakheja, and A. J. Brammer, “Driving-point mechanical impedance of the human hand-arm system: Synthesis and model development,” J. Sound Vib., Vol.180, No.3, pp. 437-458, 1995.
- [5] A. Z. Hajian and R. D. Howe, “Identification of the mechanical impedance at the human finger tip,” Trans. ASME, J. Biomedical Eng., Vol.119, No.2, pp. 109-114, 1997.
- [6] D. R. Coles, B. S. S. Kidd, and W. Moffat, “Distensibility of blood vessels of the human calf determined by local application of subatmospheric pressure,” J. Appl. Physiology, Vol.10, pp. 461-468, 1957.
- [7] V. A. Convertino, “Endurance exercise training: conditions of enhanced hemodynamic responses and tolerance to LBNP,” Medicine & Science in Sports & Exercise, Vol.25, pp. 705-712, 1993.
- [8] M. Ichinose, M. Saito, A. Kitano, K. Hayashi, N. Kondo, and T. Nishiyasu, “Modulation of arterial baroreflex dynamic response during mild orthostatic stress in humans,” J. Physiology, Vol.557, Pt. 1, pp. 321-330, 2004.
- [9] N. Hogani, “Impedance Control; An approach to manipulation Parts I-III,” Trans. ASME, J. Dyn. Syst., Meas. Control, Vol.107, No.1, pp. 1-24, 1985.
- [10] R. F. Chandler, C. E. Clauser, J. T. McCornville, H. M. Reynolds, and J. W. Young, “Investigation of the inertial properties of the human body,” National Technical Information Services, Virginia, USA, pp. 84-96, 1975.
- [11] M. Ikai, S. Ebashi, T. Iizuka, and M. Takaishi, “Taiiku Kagaku Jiten,” Dai-ichi Hoki, Tokyo, Japan, pp. 399-407, 1972 (in Japanese).
- [12] G. H. Bell, D. Emslie-Smith, and C. R. Paterson, “Textbook of Physiology (10th Edition),” Churchill Livingstone, New York, NY, USA, pp. 325-346, 1980.
- [13] R. M. Berne and M. N. Levy, “Physiology,” C. V. Mosby, St. Louis, MO, USA, pp. 387-403, 1983.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.