single-dr.php

JDR Vol.14 No.1 pp. 105-115
(2019)
doi: 10.20965/jdr.2019.p0105

Paper:

Numerical Simulation of Mt. Merapi Pyroclastic Flow in 2010

Makoto Shimomura*,†, Raditya Putra**, Niken Angga Rukmini**, and Sulistiyani**

*Sakurajima Volcano Research Center, Disaster Prevention Research Institute, Kyoto University
1722-19 Sakurajima-Yokoyama, Kagoshima 891-1419, Japan

Corresponding author

**BPPTKG, Center for Volcanology and Geological Hazard Mitigation, Geological Agency of Indonesia, Yogyakarta, Indonesia

Received:
July 31, 2018
Accepted:
December 8, 2018
Published:
February 1, 2019
Keywords:
Merapi, pyroclastic flow, granular flow, simulation, inundation area
Abstract

A pyroclastic flow is one of the most dangerous hazardous phenomena. To escape a pyroclastic flow, the influenceable area must be evacuated before the flow occurs. Therefore, to predict the inundation area of a pyroclastic flow is important, and numerical simulation is a helpful tool in this prediction. This study simulated a pyroclastic flow by reproducing the pyroclastic flow of Mt. Merapi that occurred in 2010. However, necessary detailed information of the flow to conduct the simulation, such as total volume and the property of the pyroclastic flow material, flow rate, etc., were not available. Therefore, 20 simulations were conducted, varying the important conditions, such as the volume of pyroclastic material, inter-granular friction factor, and duration of the flow. The results showed that the volume of the pyroclastic material and inter-granular friction factor strongly control the flow characteristics. However, the friction factor does not result in a wide range of values; therefore, volume is the most influencing factor. The most suitable condition is a total volume of pyroclastic material of 30 × 106 m3, a 5 min duration of flow, and a 0.6 friction factor.

Cite this article as:
M. Shimomura, R. Putra, N. Rukmini, and Sulistiyani, “Numerical Simulation of Mt. Merapi Pyroclastic Flow in 2010,” J. Disaster Res., Vol.14 No.1, pp. 105-115, 2019.
Data files:
References
  1. [1] A. W. Woods and T. Koyaguchi, “Transitions between explosive and effusive eruptions of silicic magmas,” Nature, Vol.370, pp. 641-644, 1994.
  2. [2] H. Yamasato, “Quantitative analysis of pyroclastic flows using infrasonic and seismic data at Unzen Volcano,” Japan, J. Phys. Earth, Vol.45, No.6, pp. 397-416, 1997.
  3. [3] C. G. Newhall and S. Self, “The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism,” J. Geophys. Res., Vol.87, C2, pp. 1231-1238, 1982.
  4. [4] Y. Ishikawa, T. Yamada, S. Yajima, and Y. Shimoda, “Hot Ash Cloud Damage from Pyroclastic Flows at Unzen Volcano,” J. Japan Soc. Erosion Control Eng., Vol.46, No.4, pp. 3-9, 1993 (in Japanese).
  5. [5] T. Yamamoto, S. Takarada, and S. Suto, “Pyroclastic flows from the 1991 eruption of Unzen volcano,” Japan, Bull Volcano., Vol.55, pp. 166-175, 1993.
  6. [6] A. B. Clarke, B. Voight, A. Neri, and G. Macedonio, “Transient dynamics of vulcanian explosions and column collapse,” Nature, Vol.415, pp. 897-901, 2002.
  7. [7] S. Nakada, H. Shimizu, and K. Ohta, “Overview of the 1990–1995 eruption at Unzen Volcano,” J. Volcanol. Geotherm. Res., Vol.89, pp. 1-22, 1999.
  8. [8] T. Yamada, “Heat transfer into shelter buried by pyroclastic flow and insulation methods,” J. Japan Soc. Erosion Control Eng., Vol.61, pp. 21-28, 2008 (in Japanese).
  9. [9] F. Dobran and A. Neri, “Numerical simulation of collapsing volcanic columns,” J. Geophys. Res., Vol.98, B3, pp. 4231-4259, 1993.
  10. [10] J. T. Jenkins and S. B. Savage, “A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles,” J. Fluid Mech., Vol.130, pp. 187-202, 1983.
  11. [11] T. Takahashi and H. Tsujimoto, “A mechanical model of Merapi-type pyroclastic flow,” J. Geophys. Res., Vol.98, pp. 91-115, 2000.
  12. [12] A. K. Patra, A. C. Bauer, C. C. Nichita, E. B. Pitman, M. F. Sheridan, M. Bursik et al., “Parallel adaptive numerical simulation of dry avalanches over natural terrain,” J. Volcanol. Geotherm. Res., Vol.139, pp. 1-21, 2005.
  13. [13] K. Miyamoto, H. Suzuki, and S. Yamashita, “Model of pyroclastic flow and method of forcasting the deposit area,” Proc. of Hydraulic Eng., JSCE, Vol.36, pp. 211-216, 1992 (in Japanese).
  14. [14] S. Yamashita and K. Miyamoto, “Model of Pyroclastic Flow and Its Numerical Simulation,” Sediment Problems: Strategies for Monitoring, Prediction and Control (Proc. of the Yokohama Symposium, July 1993), IAHS Publ, Vol.217, pp. 67-74, 1993.
  15. [15] H. Itoh, J. Takahama, M. Takahashi, and K. Miyamoto, “Hazard estimation of the possible pyroclastic flow disasters using numerical simulation related to the 1994 activity at Merapi Volcano,” J. Volcanol. Geotherm. Res., Vol.100, pp. 503-516, 2000.
  16. [16] S. J. Charbonnier, A. Germa, C. B. Connor, R. Gertisser, K. Preece, J. C. Komorowski et al., “Evaluation of the impact of the 2010 pyroclastic density currents at Merapi volcano from high-resolution satellite imagery, field investigations and numerical simulations,” J. Volcanol. Geotherm. Res., Vol.261, pp. 295-315, 2013.
  17. [17] K. Kanatani, “Flow of granular materials on an inclined plane,” J. Soc. Powder Tecjnol., Japan, Vol.16, No.22, pp. 703-708, 1979 (in Japanese).
  18. [18] S. J. Cronin, G. Lube, D. S. Dayudi, S. Sumarti, S. Subrandiyo, and Surono, “Insights into the October–November 2010 Gunung Merapi eruption (Central Java, Indonesia) from the stratigraphy, volume and characteristics of its pyroclastic deposits,” J. Volcanol. Geotherm. Res., Vol.261, pp. 244-259, 2013.
  19. [19] Suruno, P. Jousset, J. Pallister, M. Boichu, M. F. Buongiorno, A. Budisantoso et al., “The 2010 explosive eruption of Java’s Merapi volcano-A ‘100-year’ event,” J. Volcanol. Geotherm. Res., Vol.241-242, pp. 121-135, 2012.
  20. [20] J. S. Pallister, D. J. Schneider, J. P. Griswold, R. H. Keeler, W. C. Burton, C. Noyles et al., “Merapi 2010 eruption–Chronology and extrusion rates monitored with satellite radar and used in eruption forecasting,” J. Volcanol. Geotherm. Res., Vol.261, pp. 144-152, 2013.
  21. [21] J. C. Komorowski, S. Jenkins, P. J. Baxter, A. Picquout, F. Lavigne, S. Charbonnier et al., “Paroxysmal dome explosion during the Merapi 2010 eruption: Processes and facies relationships of associated high-energy pyroclastic density currents,” J. Volcanol. Geotherm. Res., Vol.261, pp. 260-294, 2013.
  22. [22] C. Bignami, J. Ruch, M. Chini, M. Neri, M. F. Buongiorno, S. Hidayati et al., “Pyroclastic density current volume estimation after the 2010 Merapi volcano eruption using X-band SAR,” J. Volcanol. Geotherm. Res., Vol.261, pp. 236-243, 2013.
  23. [23] A. Solikhin, J. C. Thouret, S. C. Liew, A. Gupta, D. S. Sayudi, J. F. Oehler, Z. Kassouk, “High-spatial-resolution imagery helps map deposits of the large (VEI 4) 2010 Merapi Volcano eruption and their impact,” Bull. Volcano, Vol.77, No.20, pp. 1-23, 2015.
  24. [24] S. F. Jenkins, J. C. Phillips, R. Price, K. Feloy, P. J. Baxter, D. S. Hadmoko, and E. Béizal, “Developing building-damage scales for lahars: application to Merapi volcano,” Indonesia, Bull Volcanol., Vol.77, No.75, 2015.
  25. [25] A. Ratdomopurbo, F. Beauducel, J. Subandriyo, I. G. M. A. Nandaka, C. G. Newhall, Suharna et al., “Overview of the 2006 eruption of Mt. Merapi,” J. Volcanol. Geotherm. Res., Vol.261, pp. 87-97, 2013.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 22, 2024