single-jc.php

JACIII Vol.29 No.5 pp. 1019-1028
doi: 10.20965/jaciii.2025.p1019
(2025)

Research Paper:

Multi Strategy SA-PSO for Inverted Pendulum Identification Combined with Explicit Model Predictive Control

Zixu Li, Jingyuan Li, Yuhui Huang, Yiran Li, and Bin Xin

Beijing Institute of Technology
No.5 Zhongguancun South Street, Haidian District, Beijing 100081, China

Received:
December 20, 2024
Accepted:
April 16, 2025
Published:
September 20, 2025
Keywords:
inverted pendulum, simulated annealing, particle swarm optimization, constraint processing, model predictive control
Abstract

In this paper, the inverted pendulum is controlled by Quanser universal benchtop equipment-direct current (QUBE DC) motor, and the motor inverted pendulum system is identified when the sinusoidal signal is input. However, there is a large error when the angle of the pendulum is pre-identified by numerical algorithms for subspace state space system identification algorithm. Therefore, this paper designs a multi strategy optimization simulated annealing particle swarm optimization algorithm, which can accurately identify the complex system with sinusoidal input signal. In the identification experiments of sinusoidal signals with multiple frequencies and amplitudes, this paper found that the algorithm performs relatively best at a frequency of 8 rad/s. Moreover, at a frequency of 8 rad/s, the algorithm can quickly reduce the error to 1.69% within 100 generations. Finally, based on the hardware model identified by particle swarm optimization, this paper designs an explicit model predictive control method to control the inverted pendulum, and tests the constraint processing and anti-disturbance performance of the system under the voltage pulse interference with different duty cycles, which realizes the inverted pendulum balance and has robustness under the interference.

Cite this article as:
Z. Li, J. Li, Y. Huang, Y. Li, and B. Xin, “Multi Strategy SA-PSO for Inverted Pendulum Identification Combined with Explicit Model Predictive Control,” J. Adv. Comput. Intell. Intell. Inform., Vol.29 No.5, pp. 1019-1028, 2025.
Data files:
References
  1. [1] J.-J. Wang, “Simulation studies of inverted pendulum based on PID controllers,” Simulation Modelling Practice and Theory, Vol.19, Issue 1, pp. 440-449, 2011. https://doi.org/10.1016/j.simpat.2010.08.003
  2. [2] B. Ninness, “Some system identification challenges and approaches,” IFAC Proc. Volumes, Vol.42, Issue 10, pp. 1-20, 2009. https://doi.org/10.3182/20090706-3-FR-2004.00001
  3. [3] B. L. Ho, “Effective construction of linear state-variable models from input/output functions,” Regelungstechnik, Vol.14, No.12, pp. 545-548, 1966.
  4. [4] K.-J. Åström and B. Torsten, “Numerical identification of linear dynamic systems from normal operating records,” IFAC Proc. Volumes, Vol.2, Issue 2, pp. 96-111, 1965. https://doi.org/10.1016/S1474-6670(17)69024-4
  5. [5] L. Ljung, “System identification,” A. Procházka, J. Uhlíř, P. W. J. Rayner, and N. G. Kingsbury (Eds.), “Signal analysis and prediction,” pp. 163-173, Springer, 1998. https://doi.org/10.1007/978-1-4612-1768-8
  6. [6] A. K. Tangirala, “Principles of system identification: Theory and practice,” CRC Press, 2018. https://doi.org/10.1201/9781315222509
  7. [7] M. Viberg, “Subspace-based methods for the identification of linear time-invariant systems,” Automatica, Vol.31, Issue 12, pp. 1835-1851, 1995. https://doi.org/10.1016/0005-1098(95)00107-5
  8. [8] T. Katayama, “Subspace methods for system identification,” Springer, 2005. https://doi.org/10.1007/1-84628-158-X
  9. [9] M. Verhaegen and V. Verdult, “Filtering and system identification: A least squares approach,” Cambridge University Press, 2007. https://doi.org/10.1017/CBO9780511618888
  10. [10] P. van Overschee and B. De Moor, “Subspace Identification for Linear Systems: Theory–Implementation–Applications,” Springer Science & Business Media, 2012. https://doi.org/10.1007/978-1-4613-0465-4
  11. [11] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proc. of Int. Conf. on Neural Networks (ICNN’95), Vol.4, pp. 1942-1948, 1995. https://doi.org/10.1109/ICNN.1995.488968
  12. [12] X. Xiang, R. Diao, S. Bernadin, S. Y. Foo, F. Sun, and A. S. Ogundana, “An Intelligent Parameter Identification Method of DFIG Systems Using Hybrid Particle Swarm Optimization and Reinforcement Learning,” IEEE Access, Vol.12, pp. 44080-44090, 2024. https://doi.org/10.1109/ACCESS.2024.3379146
  13. [13] P. Eswari, Y. Ramalakshmanna, and C. D. Prasad, “An Improved Particle Swarm Optimization-Based System Identification,” E. S. Gopi (Ed.), “Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication,” Proc. of MDCWC 2020, pp. 137-142, Springer, 2021. https://doi.org/10.1007/978-981-16-0289-4_11
  14. [14] H. Issa and J. K. Tar, “Improvement of an Adaptive Robot Control by Particle Swarm Optimization-Based Model Identification,” Mathematics, Vol.10, Issue 19, Article No.3609, 2022. https://doi.org/10.3390/math10193609
  15. [15] M. Harati, A. A. Ghavifekr, and A. R. Ghiasi, “Model Identification of Single Rotary Inverted Pendulum Using Modified Practical Swarm Optimization Algorithm,” 2020 28th Iranian Conf. on Electrical Engineering (ICEE), 2020. https://doi.org/10.1109/ICEE50131.2020.9261035
  16. [16] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, “Optimization by Simulated Annealing,” Science, Vol.220, No.4598, pp. 671-680, 1983. https://doi.org/10.1126/science.220.4598.671
  17. [17] C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control: Theory and practice—A survey,” Automatica, Vol.25, Issue 3, pp. 335-348, 1989. https://doi.org/10.1016/0005-1098(89)90002-2
  18. [18] S. J. Qin and T. A. Badgwell, “A survey of industrial model predictive control technology,” Control Engineering Practice, Vol.11, Issue 7, pp. 733-764, 2003. https://doi.org/10.1016/S0967-0661(02)00186-7
  19. [19] A. Bemporad and M. Morari, “Robust model predictive control: A survey,” A. Garulli and A. Tesi (Eds.), “Robustness in Identification and Control,” pp. 207-226, Springer, 2007. https://doi.org/10.1007/BFb0109870
  20. [20] J. Köhler, M. A. Müller, and F. Allgöwer, “Analysis and design of model predictive control frameworks for dynamic operation—An overview,” Annual Reviews in Control, Vol.57, Article No.100929, 2024. https://doi.org/10.1016/j.arcontrol.2023.100929
  21. [21] S. Yu, M. Hirche, Y. Huang, H. Chen, and F. Allgöwer, “Model predictive control for autonomous ground vehicles: A review,” Autonomous Intelligent Systems, Vol.1, Article No.4, 2021. https://doi.org/10.1007/s43684-021-00005-z
  22. [22] T. Gold, A. Völz, and K. Graichen, “Model Predictive Interaction Control for Industrial Robots,” IFAC-PapersOnLine, Vol.53, Issue 2, pp. 9891-9898, 2020. https://doi.org/10.1016/j.ifacol.2020.12.2696
  23. [23] F. Waheed, I. K. Yousufzai, and M. Valášek, “A TV-MPC Methodology for Uncertain Under-Actuated Systems: A Rotary Inverted Pendulum Case Study,” IEEE Access, Vol.11, pp. 103636-103649, 2023. https://doi.org/10.1109/ACCESS.2023.3318108
  24. [24] M. Askari, M. Moghavvemi, H. A. F. Almurib, and A. M. A. Haidar, “Stability of soft-constrained finite horizon model predictive control,” IEEE Trans. on Industry Applications, Vol.53, Issue 6, pp. 5883-5892, 2017. https://doi.org/10.1109/TIA.2017.2718978
  25. [25] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit linear quadratic regulator for constrained systems,” Automatica, Vol.38, Issue 1, pp. 3-20, 2002. https://doi.org/10.1016/S0005-1098(01)00174-1
  26. [26] J. Courts, A. G. Wills, T. B. Schön, and B. Ninness, “Variational system identification for nonlinear state-space models,” Automatica, Vol.147, Article No.110687, 2023. https://doi.org/10.1016/j.automatica.2022.110687
  27. [27] Y. Wang, W. Mao, Q. Wang, and B. Xin, “Fuzzy Cooperative Control for the Stabilization of the Rotating Inverted Pendulum System,” J. Adv. Comput. Intell. Intell. Inform., Vol.27, No.3, pp. 360-371, 2023. https://doi.org/10.20965/jaciii.2023.p0360
  28. [28] L. Fröhlich, “Data-Efficient Controller Tuning and Reinforcement Learning,” Ph.D. thesis, ETH Zürich, 2022. https://doi.org/10.3929/ethz-b-000545134
  29. [29] H. Xu, J. Zhang, H. Yang, and Y. Xia, “Extended State Functional Observer-Based Event-Driven Disturbance Rejection Control for Discrete-Time Systems,” IEEE Trans. on Cybernetics, Vol.52, Issue 7, pp. 6949-6958, 2021. https://doi.org/10.1109/TCYB.2020.3043385
  30. [30] J. Lofberg, “YALMIP: A toolbox for modeling and optimization in MATLAB,” 2004 IEEE Int. Conf. on Robotics and Automation, pp. 284-289, 2004. https://doi.org/10.1109/CACSD.2004.1393890

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Sep. 19, 2025