single-au.php

IJAT Vol.19 No.5 pp. 906-912
doi: 10.20965/ijat.2025.p0906
(2025)

Research Paper:

Mechanical and Chemical Mechanical Planarization of Single-Crystal Diamond (100) Substrate

Akihisa Kubota ORCID Icon

Kumamoto University
2-39-1 Kurokami, Kumamoto, Kumamoto 860-8555, Japan

Corresponding author

Received:
January 21, 2025
Accepted:
July 3, 2025
Published:
September 5, 2025
Keywords:
diamond, mechanical polishing, chemical mechanical planarization, smoothing
Abstract

A sequential polishing method for single-crystal diamond substrates under atmospheric conditions is demonstrated. The process consists of two stages: (1) rough polishing using mechanical polishing with 3 µm diamond abrasives and (2) finish polishing through chemical mechanical planarization employing a nickel plate with hydrogen peroxide (H2O2) solution as the oxidizer. Each stage of the diamond (100) polishing process was conducted for 1 h. Surface flatness and microroughness were evaluated using a scanning white light interferometric microscopy and atomic force microscopy, while subsurface damage was examined by high-resolution transmission electron microscopy. Experimental results show significant improvements: the surface flatness of the diamond substrate was enhanced, and the surface roughness was reduced from Sa=3.667 nm to Sa=0.120 nm after 2 h of polishing. In addition, power spectral density analysis confirmed a reduction in surface roughness within the spatial wavelength range of 10–1000 µm following finish polishing. The subsurface damage depth after finish polishing was found to be less than 1 nm. These findings demonstrate that the proposed two-step polishing method effectively produces high-precision diamond surfaces with high efficiency.

Cite this article as:
A. Kubota, “Mechanical and Chemical Mechanical Planarization of Single-Crystal Diamond (100) Substrate,” Int. J. Automation Technol., Vol.19 No.5, pp. 906-912, 2025.
Data files:
References
  1. [1] A. P. Malshe, B. S. Park, W. D. Brown, and H. A. Naseem, “A review of techniques for polishing and planarizing chemically vapor-deposited (CVD) diamond films and substrates,” Diam. Relat. Mater., Vol.8, No.7, pp. 1198-1213, 1999. https://doi.org/10.1016/S0925-9635(99)00088-6
  2. [2] S. Shikata, “Single crystal diamond wafers for high power electronics,” Diam. Relat. Mater, Vol.65, pp. 168-175, 2016. https://doi.org/10.1016/j.diamond.2016.03.013
  3. [3] M. Seal, “The abrasion of diamond,” Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci., Vol.248, No.1254, pp. 379-393, 1958. https://doi.org/10.1098/rspa.1958.0250
  4. [4] S. E. Grillo and J. E. Field, “The polishing of diamond,” J. Phys. D: Appl. Phys., Vol.30, No.2, pp. 202-209, 1997. https://doi.org/10.1088/0022-3727/30/2/007
  5. [5] J. R. Hird and J. E. Field, “Diamond polishing,” Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci., Vol.460, No.2052, pp. 3547-3568, 2004. https://doi.org/10.1098/rspa.2004.1339
  6. [6] W. J. Zong et al., “The material removal mechanism in mechanical lapping of diamond cutting tools,” Int. J. Mach. Tools Manuf., Vol.45, Nos.7-8, pp. 783-788, 2005. https://doi.org/10.1016/j.ijmachtools.2004.11.014
  7. [7] S. E. Grillo, J. E. Field, and F. M. van Bouwelen, “Diamond polishing: The dependency of friction and wear on load and crystal orientation,” J. Phys. D: Appl. Phys., Vol.33, No.8, pp. 985-990, 2000. https://doi.org/10.1088/0022-3727/33/8/315
  8. [8] L. Pastewka, S. Moser, P. Gumbsch, and M. Moseler, “Anisotropic mechanical amorphization drives wear in diamond,” Nat. Mater., Vol.10, No.1, pp. 34-38, 2011. https://doi.org/10.1038/nmat2902
  9. [9] Y. Lin, J. Lu, R. Tong, Q. Luo, and X. Xu, “Surface damage of single-crystal diamond (100) processed based on a sol-gel polishing tool,” Diam. Relat. Mater., Vol.83, pp. 46-53, 2018. https://doi.org/10.1016/j.diamond.2018.01.023
  10. [10] M. A. Doronin et al., “Limits of single crystal diamond surface mechanical polishing,” Diam. Relat. Mater., Vol.87, pp. 149-155, 2018. https://doi.org/10.1016/j.diamond.2018.05.016
  11. [11] Z. Yuan, Z. Jin, Y. Zhang, and Q. Wen, “Chemical mechanical polishing slurries for chemically vapor-deposited diamond films,” J. Manuf. Sci. Eng., Vol.135, No.4, Article No.041006, 2013. https://doi.org/10.1115/1.4024034
  12. [12] E. L. H. Thomas, G. W. Nelson, S. Mandal, J. S. Foord, and O. A. Williams, “Chemical mechanical polishing of thin film diamond,” Carbon, Vol.68, pp. 473-479, 2014. https://doi.org/10.1016/j.carbon.2013.11.023
  13. [13] E. L. H. Thomas, S. Mandal, E. B. Brousseau, and O. A. Williams, “Silica based polishing of 100 and 111 single crystal diamond,” Sci. Technol. Adv. Mater., Vol.15, No.3, Article No.035013, 2014. https://doi.org/10.1088/1468-6996/15/3/035013
  14. [14] A. Kubota, S. Fukuyama, Y. Ichimori, and M. Touge, “Surface smoothing of single-crystal diamond (100) substrate by polishing technique,” Diam. Relat. Mater., Vol.24, pp. 59-62, 2012. https://doi.org/10.1016/j.diamond.2011.10.022
  15. [15] A. Kubota, S. Nagae, S. Motoyama, and M. Touge, “Two-step polishing technique for single crystal diamond (100) substrate utilizing a chemical reaction with iron plate,” Diam. Relat. Mater., Vol.60, pp. 75-80, 2015. https://doi.org/10.1016/j.diamond.2015.10.026
  16. [16] A. Kubota, S. Nagae, and M. Touge, “Improvement of material removal rate of single-crystal diamond by polishing using H2O2 solution,” Diam. Relat. Mater., Vol.70, pp. 39-45, 2016. https://doi.org/10.1016/j.diamond.2016.09.028
  17. [17] A. Kubota, S. Nagae, and S. Motoyama, “High-precision mechanical polishing method for diamond substrate using micron-sized diamond abrasive grains,” Diam. Relat. Mater., Vol.101, Article No.107644, 2020. https://doi.org/10.1016/j.diamond.2019.107644
  18. [18] A. Kubota and T. Takita, “Novel planarization method of single-crystal diamond using 172 nm vacuum-ultraviolet light,” Precis. Eng., Vol.54, pp. 269-275, 2018. https://doi.org/10.1016/j.precisioneng.2018.06.003

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Sep. 05, 2025