single-dr.php

JDR Vol.20 No.4 pp. 423-444
(2025)
doi: 10.20965/jdr.2025.p0423

Review:

Impact of Climate Change on Human Health in Thailand: A Literature Review

Pitcha Ratanawong* ORCID Icon, Pachanat Nunthaitaweekul** ORCID Icon, Phuong Trang Huynh***, and Uruya Weesakul*,† ORCID Icon

*Research Unit in Climate Change and Sustainability, Department of Civil Engineering, Faculty of Engineering, Thammasat School of Engineering, Thammasat University
99 Phahonyothin Road, Khlong Nueng, Khlong Luang District, Pathum Thani 12120, Thailand

Corresponding author

**Faculty of Nursing, Chulalongkorn University
Bangkok, Thailand

***Independent Consultant
Bangkok, Thailand

Received:
September 4, 2024
Accepted:
June 18, 2025
Published:
August 1, 2025
Keywords:
climate change, natural disasters, health disaster, Thailand
Abstract

This study aims to find and summarize published studies that examined the effects of climate change on human health and diseases in Thailand by conducting a literature review using the preferred reporting items for systematic reviews and meta-analysis guidelines between October 17, 2023, and January 31, 2024. We searched PubMed and OvidSP for relevant research. We included studies that were written in English or Thai; primary research focused on climate change or its subsets (natural disasters or climate issues, such as rising temperatures and altered weather patterns that increase the frequency, intensity, and severity of many natural disasters and climate issues); focused on human health; indexed by PubMed or OvidSP; available as published research with full-text journal articles; and published in 2013 or later. Our search yielded 53 relevant articles. These articles identified five main categories of climate issues: temperature, rainfall/precipitation, humidity, wind speed, and flooding. We identified five categories of health issues: dengue, respiratory diseases and infections, malaria, skin diseases/symptoms, and other health issues. The most studied relationship is between temperature and dengue. Most articles reported the harmful effects of climate issues on health, although four reported opposite effects, and seven reported no significant associations. Among the 53 articles, ten utilized prediction models. The main goal of this review is to summarize current research to guide future studies and assist policymakers in prioritizing climate-related health policies in Thailand. Study limitations include the use of only two databases, the restriction to articles from 2013 onwards, and the inclusion of only articles in English and Thai, which may have limited the number of articles found for this literature review.

Cite this article as:
P. Ratanawong, P. Nunthaitaweekul, P. Huynh, and U. Weesakul, “Impact of Climate Change on Human Health in Thailand: A Literature Review,” J. Disaster Res., Vol.20 No.4, pp. 423-444, 2025.
Data files:
References
  1. [1] United Nations Development Programme, “The climate dictionary: An everyday guide to climate change,” 2023. https://climatepromise.undp.org/news-and-stories/climate-dictionary-everyday-guide-climate-change [Accessed August 1, 2024]
  2. [2] National Oceanic and Atmospheric Administration, U.S. Department of Commerce, “Climate change impacts,” 2021. https://www.noaa.gov/education/resource-collections/climate/climate-change-impacts [Accessed August 1, 2024]
  3. [3] United States Environmental Protection Agency, “Climate impacts on agriculture and food supply,” 2017. https://19january2017snapshot.epa.gov/climate-impacts/climate-impacts-agriculture-and-food-supply_.html [Accessed July 23, 2025]
  4. [4] J. L. Gamble, J. Balbus, M. Berger, K. Bouye, V. Campbell, K. Chief, M. Conlon, A. Crimmins, P. Flanagan, K. Gonzalez-Maddux, R. Jantarasami, S. Khoury, L. Kiefer, C. Kolling, J. Lane, S. Marinucci, M. McDonald, K. Mitchell, D. Moss, C. H. Portier, A. J. Sussman, and T. F. Ziska, “Ch. 9: Populations of concern,” U.S. Global Change Research Program, “The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment,” pp. 247-286, 2016. https://doi.org/10.7930/J0Q81B0T
  5. [5] C. G. Nolte, P. Dolwick, N. Fann, L. W. Horowitz, V. Naik, R. W. Pinder, D. J. Shindell, S. J. Smith, L. H. Ziska, and J. R. West, “Chapter 13: Air Quality,” Impacts, Risks, and Adaptation in the United States: The Fourth National Climate Assessment, Vol.II, U.S. Global Change Research Program, 2018.
  6. [6] M. K. Walsh, P. W. Backlund, L. Buja, A. DeGaetano, R. Melnick, and L. Prokopy, “Climate indicators for agriculture,” USDA Technical Bulletin No.195, 2020. https://doi.org/10.25675/10217/210930
  7. [7] World Health Organization, “Climate change,” 2023. https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health [Accessed August 1, 2024]
  8. [8] B. Levecke, A. Montresor, M. Albonico, S. M. Ame, J. M. Behnke, J. M. Bethony, C. D. Noumedem, D. Engels, B. Guillard, A. C. Kotze, A. J. Krolewiecki, J. S. McCarthy, Z. Mekonnen, M. V. Periago, H. Sopheak, L.-A. Tchuem-Tchuenté, T. T. Duong, N. T. Huong, A. Zeynudin, and J. Vercruysse, “Assessment of anthelmintic efficacy of mebendazole in school children in six countries where soil-transmitted helminths are endemic,” PLOS Neglected Tropical Diseases, Vol.8, Article No.e3204, 2014. https://doi.org/10.1371/journal.pntd.0003204
  9. [9] A. Keswani, H. Akselrod, and S. C. Anenberg, “Health and clinical impacts of air pollution and linkages with climate change,” NEJM Evidence, Vol.1, No.5, Article No.EVIDra2200068, 2022. https://doi.org/10.1056/EVIDra2200068
  10. [10] R. E. Baker, A. S. Mahmud, I. F. Miller, M. Rajeev, F. Rasambainarivo, B. L. Rice, W. J. Moss, J. Dushoff, B. T. Grenfell, and C. J. E. Metcalf, “Infectious disease in an era of global change,” Nature Reviews Microbiology, Vol.20, No.4, pp. 193-205, 2022. https://doi.org/10.1038/s41579-021-00639-z
  11. [11] J. C. Semenza, J. Rocklöv, and K. L. Ebi, “Climate change and cascading risks from infectious disease,” Infectious Diseases and Therapy, Vol.11, No.4, pp. 1371-1390, 2022. https://doi.org/10.1007/s40121-022-00647-3
  12. [12] S. Kharwadkar, V. Attanayake, J. Duncan, N. Navaratne, and J. Benson, “The impact of climate change on the risk factors for tuberculosis: A systematic review,” Environmental Research, Vol.212, Article No.113436, 2022. https://doi.org/10.1016/j.envres.2022.113436
  13. [13] S. Banu, W. Hu, C. Hurst, and S. Tong, “Dengue transmission in the Asia-Pacific region: Impact of climate change and socio-environmental factors,” Tropical Medicine and Int. Health, Vol.16, No.5, pp. 598-607, 2011. https://doi.org/10.1111/j.1365-3156.2011.02734.x
  14. [14] C. Li, Y. Lu, J. Liu, and X. Wu, “Climate change and dengue fever transmission in China: Evidences and challenges,” Science of the Total Environment, Vols.622-623, pp. 493-501, 2018. https://doi.org/10.1016/j.scitotenv.2017.11.326
  15. [15] M. A. Kulkarni, C. Duguay, and K. Ost, “Charting the evidence for climate change impacts on the global spread of malaria and dengue and adaptive responses: A scoping review of reviews,” Globalization and Health, Vol.18, Article No.1, 2022. https://doi.org/10.1186/s12992-021-00793-2
  16. [16] J. Rocklöv and R. Dubrow, “Climate change: An enduring challenge for vector-borne disease prevention and control,” Nature Immunology, Vol.21, No.5, pp. 479-483, 2020. https://doi.org/10.1038/s41590-020-0648-y
  17. [17] M. S. López, G. V. Müller, and W. F. Sione, “Analysis of the spatial distribution of scientific publications regarding vector-borne diseases related to climate variability in South America,” Spatial and Spatio-temporal Epidemiology, Vol.26, pp. 35-93, 2018. https://doi.org/10.1016/j.sste.2018.04.003
  18. [18] A. Gadre, W. Enbiale, L. K. Andersen, and S. J. Coates, “The effects of climate change on fungal diseases with cutaneous manifestations: A report from the International Society of Dermatology Climate Change Committee,” J. of Climate Change and Health, Vol.6, Article No.100156, 2022. https://doi.org/10.1016/j.joclim.2022.100156
  19. [19] V. Zingales, M. Taroncher, P. A. Martino, M.-J. Ruiz, and F. Caloni, “Climate change and effects on molds and mycotoxins,” Toxins, Vol.14, No.7, Article No.445, 2022. https://doi.org/10.3390/toxins14070445
  20. [20] W. H. Dietz, “Climate change and malnutrition: We need to act now,” J. of Clinical Investigation, Vol.130, No.2, pp. 556-558, 2020. https://doi.org/10.1172/JCI135004
  21. [21] P. Mafongoya, M. Musokwa, L. Mwadzingeni, and M. M. Phophi, “Climate change impacts on food and nutrition security on smallholder farmers in Southern Africa,” H. A. Mupambwa, A. D. Nciizah, P. Nyambo, B. Muchara, and N. N. Gabriel (Eds.), “Food Security and African Smallholder Farmers,” pp. 233-249, Springer Singapore, 2022. https://doi.org/10.1007/978-981-16-6771-8_14
  22. [22] D. Luschkova, C. Traidl-Hoffmann, and A. Ludwig, “Climate change and allergies,” Allergo J. Int., Vol.31, No.4, pp. 114-120, 2022. https://doi.org/10.1007/s40629-022-00212-x
  23. [23] E. Nardell, P. Lederer, H. Mishra, R. Nathavitharana, and G. Theron, “Cool but dangerous: How climate change is increasing the risk of airborne infections,” Indoor Air, Vol.30, No.2, pp. 195-197, 2020. https://doi.org/10.1111/ina.12608
  24. [24] A. M. Peirce, L. M. Espira, and P. S. Larson, “Climate change related catastrophic rainfall events and non-communicable respiratory disease: A systematic review of the literature,” Climate, Vol.10, No.7, Article No.101, 2022. https://doi.org/10.3390/cli10070101
  25. [25] M. Urrutia-Pereira, G. Guidos-Fogelbach, and D. Solé, “Climate changes, air pollution and allergic diseases in childhood and adolescence,” Jornal de Pediatria, Vol.98, Supplement 1, pp. S47-S54, 2022. https://doi.org/10.1016/j.jped.2021.10.005
  26. [26] H. Khraishah, B. Alahmad, R. L. Ostergard, A. AlAshqar, M. Albaghdadi, N. Vellanki, M. M. Chowdhury, S. G. Al-Kindi, A. Zanobetti, A. Gasparrini, and S. Rajagopalan, “Climate change and cardiovascular disease: Implications for global health,” Nature Reviews Cardiology, Vol.19, No.11, pp. 798-812, 2022. https://doi.org/10.1038/s41569-022-00720-x
  27. [27] J. De Blois, T. Kjellstrom, S. Agewall, J. A. Ezekowitz, P. W. Armstrong, and D. Atar, “The effects of climate change on cardiac health,” Cardiology, Vol.131, No.4, pp. 209-217, 2015. https://doi.org/10.1159/000398787
  28. [28] C. Zammit, N. Torzhenskaya, P. D. Ozarkar, and J. C. Agius, “Neurological disorders vis-à-vis climate change,” Early Human Development, Vol.155, Article No.105217, 2021. https://doi.org/10.1016/j.earlhumdev.2020.105217
  29. [29] R. A. Hiatt and N. Beyeler, “Cancer and climate change,” The Lancet Oncology, Vol.21, Issue 11, pp. e519-e527, 2020. https://doi.org/10.1016/S1470-2045(20)30448-4
  30. [30] L. M. Nogueira, K. R. Yabroff, and A. Bernstein, “Climate change and cancer,” CA: A Cancer J. for Clinicians, Vol.70, Issue 4, pp. 239-244, 2020. https://doi.org/10.3322/caac.21610
  31. [31] E. R. Parker, “The influence of climate change on skin cancer incidence – A review of the evidence,” Int. J. of Women’s Dermatology, Vol.7, No.1, pp. 17-27, 2021. https://doi.org/10.1016/j.ijwd.2020.07.003
  32. [32] F. Vergunst and H. L. Berry, “Climate change and children’s mental health: A developmental perspective,” Clinical Psychological Science, Vol.10, No.4, pp. 767-785, 2022. https://doi.org/10.1177/21677026211040787
  33. [33] E. L. Lawrance, R. Thompson, J. N. L. Vay, L. Page, and N. Jennings, “The impact of climate change on mental health and emotional wellbeing: A narrative review of current evidence, and its implications,” Int. Review of Psychiatry, Vol.34, No.5, pp. 443-498, 2022. https://doi.org/10.1080/09540261.2022.2128725
  34. [34] The World Bank Group and the Asian Development Bank, “Climate Risk Country Profile: Thailand,” 2021.
  35. [35] Organisation for Economic Co-operation and Development, “Multi-dimensional review of Thailand (Volume 1): Initial assessment,” OECD Development Pathways, 2018. https://doi.org/10.1787/9789264293311-en
  36. [36] International Monetary Fund, “GDP per capita, current prices.” https://www.imf.org/external/datamapper/PPPPC@WEO/OEMDC/ADVEC/WEOWORLD [Accessed July 23, 2025]
  37. [37] Central Intelligence Agency, “The World Factbook: Thailand.” https://www.cia.gov/the-world-factbook/countries/thailand/summaries [Accessed August 1, 2024]
  38. [38] World Bank Group, “Thailand Rural income diagnostic: Challenges and opportunities for rural farmers,” October 20, 2022. https://www.worldbank.org/en/country/thailand/publication/thailand-rural-income-diagnostic-challenges-and-opportunities-for-rural-farmers [Accessed July 23, 2025]
  39. [39] World Bank Group, “Thai Flood 2011: Rapid assessment for resilient recovery and reconstruction planning,” 2012.
  40. [40] European Commission, “Inform index for risk management: Thailand country profile,” 2019.
  41. [41] Z. W. Kundzewicz, S. Kanae, S. I. Seneviratne, J. Handmer, N. Nicholls, P. Peduzzi, R. Mechler, L. M. Bouwer, N. Arnell, K. Mach, R. Muir-Wood, G. R. Brakenridge, W. Kron, G. Benito, Y. Honda, K. Takahashi, and B. Sherstyukov, “Flood risk and climate change: Global and regional perspectives,” Hydrological Sciences J., Vol.59, No.1, pp. 1-28, 2014. https://doi.org/10.1080/02626667.2013.857411
  42. [42] R. Kaewthongrach, Y. Vitasse, T. Lamjiak, and A. Chidthaisong, “Impact of severe drought during the strong 2015/2016 El Nino on the Phenology and survival of secondary dry dipterocarp species in Western Thailand,” Forests, Vol.10, No.11, Article No.967, 2019. https://doi.org/10.3390/f10110967
  43. [43] M. Kiguchi, et al., “A review of climate-change impact and adaptation studies for the water sector in Thailand,” Environmental Research Letters, Vol.16, No.2, Article No.023004, 2021. https://doi.org/10.1088/1748-9326/abce80
  44. [44] L. Berrang-Ford, A. J. Sietsma, M. Callaghan, J.C. Minx, P. F. D. Scheelbeek, N. R. Haddaway, A. Haines, and A. D. Dangour, “Systematic mapping of global research on climate and health: A machine learning review,” The Lancet Planetary Health, Vol.5, No.8, pp. e514-e525, 2021. https://doi.org/10.1016/S2542-5196(21)00179-0
  45. [45] M. Romanello, et al., “The 2023 report of the Lancet Countdown on health and climate change: The imperative for a health-centred response in a world facing irreversible harms,” The Lancet, Vol.402, No.10420, pp. 2346-2394, 2023. https://doi.org/10.1016/S0140-6736(23)01859-7
  46. [46] World Health Organization, “Emergency Cycle.” https://www.who.int/europe/emergencies/emergency-cycle [Accessed August 1, 2024]
  47. [47] M. J. Page, D. Moher, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D. Mulrow, L. Shamseer, J. M. Tetzlaff, E. A. Akl, S. E. Brennan, R. Chou, J. Glanville, J. M. Grimshaw, A. Hróbjartsson, M. M. Lalu, T. Li, E. W. Loder, A. McDonald, E. Mayo-Wilson, S.McDonald, L. A. McGuinness, L. A. Stewart, J. Thomas, A. C. Tricco, V. A. Welch, P. Whiting, and J. E. McKenzie, “PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews,” BMJ, Vol.372, Article No.n160, 2021. https://doi.org/10.1136/bmj.n160
  48. [48] Cochrane Library, “About Cochrane Reviews,.” https://www.cochranelibrary.com/about/about-cochrane-reviews [Accessed October 3, 2023]
  49. [49] M. FitzSimmons and V. A. Gross, “A review of the OvidSP platform,” Medical Reference Services Quarterly, Vol.27, No.4, pp. 394-405, 2008. https://doi.org/10.1080/02763860802368142
  50. [50] P. Baskaran, “How to use PubMed to your advantage?,” TNOA J. of Ophthalmic Science and Research, Vol.57, No.2, pp. 176-179, 2019. https://doi.org/10.4103/tjosr.tjosr_48_19
  51. [51] M. E. Falagas, E. I. Pitsouni, G. A. Malietzis, and G. Pappas, “Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses,” FASEB J., Vol.22, No.2, pp. 338-342, 2008. https://doi.org/10.1096/fj.07-9492LSF
  52. [52] World Health Organization, “Constitution of the World Health Organization,” 1946.
  53. [53] NASA, “The impact of climate change on natural disaster,” Earth Observatory. https://earthobservatory.nasa.gov/features/RisingCost/rising_cost5.php [Accessed August 1, 2024]
  54. [54] K. M. Campbell, C. D. Lin, S. Iamsirithaworn, and T. W. Scott, “The complex relationship between weather and dengue virus transmission in Thailand,” American J. of Tropical Medicine and Hygiene, Vol.89, No.6, pp. 1066-1080, 2013. https://doi.org/10.4269/ajtmh.13-0321
  55. [55] N. Visitsunthorn, W. Chaimongkol, K. Visitsunthorn, P. Pacharn, and O. Jirapongsananuruk, “Great flood and aeroallergen sensitization in children with asthma and/or allergic rhinitis,” Asian Pacific J. of Allergy and Immunology, Vol.36, No.2, pp. 69-76, 2018. https://doi.org/10.12932/AP0886
  56. [56] S. Ninphanomchai, C. Chansang, Y. L. Hii, J. Rocklöv, and P. Kittayapong, “Predictiveness of disease risk in a global outreach tourist setting in Thailand using meteorological data and vector-borne disease incidences,” Int. J. of Environmental Research and Public Health, Vol.11, No.10, pp. 10694-10709, 2014. https://doi.org/10.3390/ijerph111010694
  57. [57] P. Srikuta, U. Inmuong, Y. Inmuong, and P. Bradshaw, “Health vulnerability of households in flooded communities and their adaptation measures: Case study in Northeastern Thailand,” Asia-Pacific J. of Public Health, Vol.27, No.7, pp. 743-755, 2015. https://doi.org/10.1177/1010539514568709
  58. [58] W. Thongtaeparak, W.-O. Pratchyapruit, S. Kotanivong, N. Sirithanakit, S. Thunyaharn, R. Rangsin, P. Chaikaew, P. Wongyongsin, P. Pinyoboon, P. Sutthiwan, W. Theethansiri, D. Janthayanont, and M. Mungthin, “Prevalence of and risk factors for skin diseases among army personnel and flood victims during the 2011 floods in Thailand,” Disaster Medicine and Public Health Preparedness, Vol.10, No.4, pp. 570-575, 2016. https://doi.org/10.1017/dmp.2015.182
  59. [59] W. Waelveerakup, “The quality of life of flood survivors in Thailand, Nakhon Pathom Rajabhat University,” Australasian Emergency Nursing J., Vol.17, No.1, pp. 19-22, 2014. https://doi.org/10.1016/j.aenj.2013.11.001
  60. [60] T. Khawcharoenporn, A. Apisarnthanarak, K. Chunloy, and L. M. Mundy, “Access to antiretroviral therapy during excess black-water flooding in central Thailand,” AIDS Care, Vol.25, No.11, pp. 1446-1451, 2013. https://doi.org/10.1080/09540121.2013.772284
  61. [61] N. Ngaosuwankul, N. Thippornchai, A. Yamashita, R. E. M. Vargas, W. Tunyong, Y. Mahakunkijchareon, K. Ikuta, P. Singhasivanon, T. Okabayashi, and P. Leaungwutiwong, “Detection and characterization of enteric viruses in flood water from the 2011 Thai flood,” Japanese J. of Infectious Diseases, Vol.66, No.5, pp. 398-403, 2013. https://doi.org/10.7883/yoken.66.398
  62. [62] S. Suwanpakdee, J. Kaewkungwal, L. J. White, N. Asensio, P. Ratanakorn, P. Singhasivanon, and N. P. J. Day, and W. Pan-Ngum, “Spatio-temporal patterns of leptospirosis in Thailand: Is flooding a risk factor?,” Epidemiology and Infection, Vol.143, No.10, pp. 2106-2115, 2015. https://doi.org/10.1017/S0950268815000205
  63. [63] W. Thanapongtharm, T. P. Van Boeckel, C. Biradar, X.-M. Xiao, and M. Gilbert, “Rivers and flooded areas identified by medium-resolution remote sensing improve risk prediction of the highly pathogenic avian influenza H5N1 in Thailand,” Geospatial Health, Vol.8, No.2, pp. 193-201, 2013. https://doi.org/10.4081/gh.2013.66
  64. [64] T. Prapamontol, D. Norbäck, N. Thongjan, N. Suwannarin, K. Somsunun, P. Ponsawansong, K. Radarit, S. Kawichai,and W. Naksen, “Asthma and rhinitis in wet and dry season among students in upper northern Thailand: The role of building dampness and household air pollution,” Int. J. of Environmental Health Research, Vol.33, No.4, pp. 710-722, 2023. https://doi.org/10.1080/09603123.2022.2047902
  65. [65] T. Prapamontol, D. Norbäck, N. Thongjan, N. Suwannarin, K. Somsunun, P. Ponsawansong, K. Radarit, S. Kawichai, and W. Naksen, “Respiratory infections among junior high school students in upper Northern Thailand: The role of building dampness and mould, biomass burning and outdoor relative air humidity (RH),” Environmental Research, Vol.231, Part 1, Article No.116065, 2023. https://doi.org/10.1016/j.envres.2023.116065
  66. [66] T. Prapamontol, D. Norback, N. Thongjan, N. Suwannarin, K. Somsunun, P. Ponsawansong, T. Khuanpan, S. Kawichai, and W. Naksen, “Associations between indoor environment in residential buildings in wet and dry seasons and health of students in upper northern Thailand,” Indoor Air, Vol.31, No.6, pp. 2252-2265, 2021. https://doi.org/10.1111/ina.12873
  67. [67] E. Sombatsawat, T. Luangwilai, C. Kaewchandee, M. G. Robson, and W. Siriwong, “Impact of environmental heat exposure on the health status in farmworkers, Nakhon Ratchasima, Thailand,” Annals of the National Institute of Hygiene, Vol.74, No.1, pp. 103-111, 2023. https://doi.org/10.32394/rpzh.2023.0250
  68. [68] B. Tawatsupa, V. Yiengprugsawan, T. Kjellstrom, J. Berecki-Gisolf, S.-A. Seubsman, and A. Sleigh, “Association between heat stress and occupational injury among Thai workers: Findings of the Thai Cohort Study,” Industrial Health, Vol.51, No.1, pp. 34-46, 2013. https://doi.org/10.2486/indhealth.2012-0138
  69. [69] S. D. Arifwidodo and O. Chandrasiri, “Urban heat stress and human health in Bangkok, Thailand,” Environmental Research, Vol.185, Article No.109398, 2020. https://doi.org/10.1016/j.envres.2020.109398
  70. [70] P. Boonruksa, T. Maturachon, P. Kongtip, and S. Woskie, “Heat stress, physiological response, and heat-related symptoms among Thai sugarcane workers,” Int. J. of Environmental Research and Public Health, Vol.17, No.17, Article No.6363, 2020. https://doi.org/10.3390/ijerph17176363
  71. [71] P. Junlapeeya, T. Lorga, S. Santiprasitkul, and A. Tonkuriman, “A descriptive qualitative study of older persons and family experiences with extreme weather conditions in Northern Thailand,” Int. J. of Environmental Research and Public Health, Vol.20, No.12, Article No.6167, 2023. https://doi.org/10.3390/ijerph20126167
  72. [72] L. F. Chaves, T. W. Scott, A. C. Morrison, and T. Takada, “Hot temperatures can force delayed mosquito outbreaks via sequential changes in Aedes aegypti demographic parameters in autocorrelated environments,” Acta Tropica, Vol.129, No.1, pp. 15-24, 2014. https://doi.org/10.1016/j.actatropica.2013.02.025
  73. [73] M. S. Rahman, T. Ekalaksananan, S. Zafar, P. Poolphol, O. Shipin, U. Haque, J. Rocklöv, C. Pientong, and H. J. Overgaard “Ecological, social, and other environmental determinants of dengue vector abundance in urban and rural areas of Northeastern Thailand,” Int. J. of Environmental Research and Public Health, Vol.18, No.11, Article No.5971, 2021. https://doi.org/10.3390/ijerph18115971
  74. [74] P. Siriyasatien, A. Phumee, P. Ongruk, K. Jampachaisri, and K. Kesorn, “Analysis of significant factors for dengue fever incidence prediction,” BMC Bioinformatics, Vol.17, Article No.166, 2016. https://doi.org/10.1186/s12859-016-1034-5
  75. [75] S. Wongkoon, M. Jaroensutasinee, and K. Jaroensutasinee, “Weather factors influencing the occurrence of dengue fever in Nakhon Si Thammarat, Thailand,” Tropical Biomedicine, Vol.30, No.4, pp. 631-641, 2013.
  76. [76] S. Prachayangprecha, J. Makkoch, K. Suwannakarn, P. Vichaiwattana, S. Korkong, A. Theamboonlers, and Y. Poovorawan, “Epidemiology of seasonal influenza in Bangkok between 2009 and 2012,” J. of Infection in Developing Countries, Vol.7, No.9, pp. 734-740, 2013. https://doi.org/10.3855/jidc.2929
  77. [77] N. Suntronwong, P. Vichaiwattana, S. Klinfueng, S. Korkong, T. Thongmee, S. Vongpunsawad, and Y. Poovorawan, “Climate factors influence seasonal influenza activity in Bangkok, Thailand,” PLOS ONE, Vol.15, No.9, Article No.e0239729, 2020. https://doi.org/10.1371/journal.pone.0239729
  78. [78] I. Thongpan, S. Vongpunsawad, and Y. Poovorawan, “Respiratory syncytial virus infection trend is associated with meteorological factors,” Scientific Reports, Vol.10, Article No.10931, 2020. https://doi.org/10.1038/s41598-020-67969-5
  79. [79] K. Pratumchart, K. Suwannatrai, C. Sereewong, K. Thinkhamrop, J. Chaiyos, T. Boonmars, and A. T. Suwannatrai, “Ecological niche model based on maximum entropy for mapping distribution of Bithynia siamensis goniomphalos, first intermediate host snail of Opisthorchis viverrini in Thailand,” Acta Tropica, Vol.193, pp. 183-191, 2019. https://doi.org/10.1016/j.actatropica.2019.03.004
  80. [80] S. Chadsuthi, S. Iamsirithaworn, W. Triampo, and D. A. T. Cummings, “The impact of rainfall and temperature on the spatial progression of cases during the chikungunya re-emergence in Thailand in 2008-2009,” Trans. of the Royal Society of Tropical Medicine and Hygiene, Vol.110, No.3, pp. 125-133, 2016. https://doi.org/10.1093/trstmh/trv114
  81. [81] C. Davis, A. K. Murphy, H. Bambrick, G. J. Devine, F. D. Frentiu, L. Yakob, X. Huang, Z. Li, W. Yang, G. Williams, and W. Hu, “A regional suitable conditions index to forecast the impact of climate change on dengue vectorial capacity,” Environmental Research, Vol.195, Article No.110849, 2021. https://doi.org/10.1016/j.envres.2021.110849
  82. [82] B. García-Carreras, B. Yang, M. K. Grabowski, L. W. Sheppard, A. T. Huang, H. Salje, H. E. Clapham, S. Iamsirithaworn, P. Doung-Ngern, J. Lessler, and D. A. T. Cummings, “Periodic synchronisation of dengue epidemics in Thailand over the last 5 decades driven by temperature and immunity,” PLOS Biology, Vol.20, No.3, Article No.e3001160, 2022. https://doi.org/10.1371/journal.pbio.3001160
  83. [83] A. Luenam and N. Puttanapong, “Modelling and analyzing spatial clusters of leptospirosis based on satellite-generated measurements of environmental factors in Thailand during 2013–2015,” Geospatial Health, Vol.15, Article No.856, 2020. https://doi.org/10.4081/gh.2020.856
  84. [84] C. E. G. Mercado, S. Lawpoolsri, P. Sudathip, J. Kaewkungwal, A. Khamsiriwatchara, W. Pan-Ngum, S. Yimsamran, S. Lawawirojwong, K. Ho, N. Ekapirat, R. R. Maude, J. Wiladphaingern, V. I. Carrara, N. P. J. Day, A. M. Dondorp, and R. J. Maude “Spatiotemporal epidemiology, environmental correlates, and demography of malaria in Tak Province, Thailand (2012–2015),” Malaria J., Vol.18, Article No.240, 2019. https://doi.org/10.1186/s12936-019-2871-2
  85. [85] P. M. Nimbalkar and N. K. Tripathi, “Space-time epidemiology and effect of meteorological parameters on influenza-like illness in Phitsanulok, a northern province in Thailand,” Geospatial Health, Vol.11, Article No.447, 2016. https://doi.org/10.4081/gh.2016.447
  86. [86] F. I. Abdulsalam, P. Antúnez, S. Yimthiang, and W. Jawjit, “Influence of climate variables on dengue fever occurrence in the southern region of Thailand,” PLOS Global Public Health, Vol.2, No.4, Article No.e0000188, 2022. https://doi.org/10.1371/journal.pgph.0000188
  87. [87] F. I. Abdulsalam, P. Antúnez, and W. Jawjit, “Spatio-temporal dengue risk modelling in the south of Thailand: A Bayesian approach to dengue vulnerability,” PeerJ, Vol.11, Article No.e15619, 2023. https://doi.org/10.7717/peerj.15619
  88. [88] R. Jain, S. Sontisirikit, S. Iamsirithaworn, and H. Prendinger, “Prediction of dengue outbreaks based on disease surveillance, meteorological and socio-economic data,” BMC Infectious Diseases, Vol.19, Article No.272, 2019. https://doi.org/10.1186/s12879-019-3874-x
  89. [89] U. Langkulsen, K. P. N. Sakolnakhon, and N. James, “Climate change and dengue risk in central region of Thailand,” Int. J. of Environmental Health Research, Vol.30, No.3, pp. 327-335, 2020. https://doi.org/10.1080/09603123.2019.1599100
  90. [90] T. Phanitchat, B. Zhao, U. Haque, C. Pientong, T. Ekalaksananan, S. Aromseree, K. Thaewnongiew, B. Fustec, M. J. Bangs, N. Alexander, and H. J. Overgaard, “Spatial and temporal patterns of dengue incidence in northeastern Thailand 2006–2016,” BMC Infectious Diseases, Vol.19, Article No.743, 2019. https://doi.org/10.1186/s12879-019-4379-3
  91. [91] M. S. Rahman, H. J. Overgaard, C. Pientong, M. Mayxay, T. Ekalaksananan, S. Aromseree, S. Phanthanawiboon, S. Zafar, O. Shipin, R. E. Paul, S. Phommachanh, T. Pongvongsa, N. Vannavong, and U. Haque “Knowledge, attitudes, and practices on climate change and dengue in Lao People’s Democratic Republic and Thailand,” Environmental Research, Vol.193, Article No.110509, 2021. https://doi.org/10.1016/j.envres.2020.110509
  92. [92] Y. Wang, Y. Wei, K. Li, X. Jiang, C. Li, Q. Yue, B. C.-Y. Zee, and K. C. Chong , “Impact of extreme weather on dengue fever infection in four Asian countries: A modelling analysis,” Environment Int., Vol.169, Article No.107518, 2022. https://doi.org/10.1016/j.envint.2022.107518
  93. [93] Z. Xu, H. Bambrick, L. Yakob, G. Devine, J. Lu, F. D. Frentiu, W. Yang, G. Williams, and W. Hu, “Spatiotemporal patterns and climatic drivers of severe dengue in Thailand,” Science of the Total Environment, Vol.656, pp. 889-901, 2019. https://doi.org/10.1016/j.scitotenv.2018.11.395
  94. [94] F. J. Colón-González, R. Gibb, K. Khan, A. Watts, R. Lowe, and O. J. Brady, “Projecting the future incidence and burden of dengue in Southeast Asia,” Nature Communications, Vol.14, Article No.5439, 2023. https://doi.org/10.1038/s41467-023-41017-y
  95. [95] R. Chumpu, N. Khamsemanan, and C. Nattee, “The association between dengue incidences and provincial-level weather variables in Thailand from 2001 to 2014,” PLOS ONE, Vol.14, No.12, Article No.e0226945, 2019. https://doi.org/10.1371/journal.pone.0226945
  96. [96] S. Polwiang, “The time series seasonal patterns of dengue fever and associated weather variables in Bangkok (2003–2017),” BMC Infectious Diseases, Vol.20, Article No.208, 2020. https://doi.org/10.1186/s12879-020-4902-6
  97. [97] Y. Chen, C. W. Chu, M. I. C. Chen, and A. R. Cook, “The utility of LASSO-based models for real time forecasts of endemic infectious diseases: A cross country comparison,” J. of Biomedical Informatics, Vol.81, pp. 16-30, 2018. https://doi.org/10.1016/j.jbi.2018.02.014
  98. [98] S. Chadsuthi, S. Iamsirithaworn, W. Triampo, and C. Modchang, “Modeling seasonal influenza transmission and its association with climate factors in Thailand using time-series and ARIMAX analyses,” Computational and Mathematical Methods in Medicine, Vol.2015, Article No.436495, 2015. https://doi.org/10.1155/2015/436495
  99. [99] A. Ruchiraset and K. Tantrakarnapa, “Time series modeling of pneumonia admissions and its association with air pollution and climate variables in Chiang Mai Province, Thailand,” Environmental Science and Pollution Research Int., Vol.25, No.33, pp. 33277-33285, 2018. https://doi.org/10.1007/s11356-018-3284-4
  100. [100] A. Phosri, T. Sihabut, and C. Jaikanlaya, “Short-term effects of diurnal temperature range on hospital admission in Bangkok, Thailand,” Science of the Total Environment, Vol.717, Article No.137202, 2020. https://doi.org/10.1016/j.scitotenv.2020.137202
  101. [101] M. Kotepui and K. U. Kotepui, “Impact of weekly climatic variables on weekly Malaria incidence throughout Thailand: A country-based six-year retrospective study,” J. of Environmental and Public Health, Vol.2018, Article No.8397815, 2018. https://doi.org/10.1155/2018/8397815
  102. [102] C. Wang, B. Thakuri, A. K. Roy, N. Mondal, Y. Qi, and A. Chakraborty, “Changes in the associations between malaria incidence and climatic factors across malaria endemic countries in Africa and Asia-Pacific region,” J. of Environmental Management, Vol.331, Article No.117264, 2023. https://doi.org/10.1016/j.jenvman.2023.117264
  103. [103] C. Rotejanaprasert, N. Ekapirat, P. Sudathip, and R. J. Maude, “Bayesian spatio-temporal distributed lag modeling for delayed climatic effects on sparse malaria incidence data,” BMC Medical Research Methodology, Vol.21, Article No.287, 2021. https://doi.org/10.1186/s12874-021-01480-x
  104. [104] Y. He, L. Cheng, J. Bao, S. Deng, W. Liao, Q. Wang, B. Tawatsupa, S. Hajat, and C. Huang, “Geographical disparities in the impacts of heat on diabetes mortality and the protective role of greenness in Thailand: A nationwide case-crossover analysis,” Science of the Total Environment, Vol.711, Article No.135098, 2020. https://doi.org/10.1016/j.scitotenv.2019.135098
  105. [105] P. Kittipornkul, P. Thiravetyan, Y. Hoshika, B. Sorrentino, I. Popa, S. Leca, P. Sicard, E. Paoletti, and A. De Marco, “Surface ozone risk to human health and vegetation in tropical region: The case of Thailand,” Environmental Research, Vol.234, Article No.116566, 2023. https://doi.org/10.1016/j.envres.2023.116566
  106. [106] S. Sangkham, S. Thongtip, and P. Vongruang, “Influence of air pollution and meteorological factors on the spread of COVID-19 in the Bangkok Metropolitan Region and air quality during the outbreak,” Environmental Research, Vol.197, Article No.111104, 2021. https://doi.org/10.1016/j.envres.2021.111104
  107. [107] K. Chaichana, A. Kitro, S. Chaidee, and T. Rojsiraphisal, “The potential effects of temperature on outpatient visits: A case study in Chiang Mai, Thailand,” Environmental Science and Pollution Research Int., Vol.28, No.44, pp. 64431-64439, 2021. https://doi.org/10.1007/s11356-021-15512-y
  108. [108] World Bank Group, “Thailand economic monitor: Coping with droughts and floods; building a sustainable future,” 2023.
  109. [109] R. J. Rocque, C. Beaudoin, R. Ndjaboue, L. Cameron, L. Poirier-Bergeron, R.-A. Poulin-Rheault, C. Fallon, A. C. Tricco, and H. O. Witteman, “Health effects of climate change: An overview of systematic reviews,” BMJ Open, Vol.11, No.11, Article No.e046333, 2021. https://doi.org/10.1136/bmjopen-2020-046333
  110. [110] P. L. Chua, M. M. Dorotan, J. A. Sigua, R. D. Estanislao, M. Hashizume, and M. A. Salazar, “Scoping review of climate change and health research in the Philippines: A complementary tool in research agenda-setting,” Int. J. of Environmental Research and Public Health, Vol.16, No.14, Article No.2624, 2019. https://doi.org/10.3390/ijerph16142624
  111. [111] P. Van De Vuurst and L. E. Escobar, “Climate change and infectious disease: A review of evidence and research trends,” Infectious Diseases of Poverty, Vol.12, Article No.51, 2023. https://doi.org/10.1186/s40249-023-01102-2
  112. [112] C. L. Lau, L. D. Smythe, S. B. Craig, and P. Weinstein, “Climate change, flooding, urbanisation and leptospirosis: Fuelling the fire?,” Trans. of the Royal Society of Tropical Medicine and Hygiene, Vol.104, No.10, pp. 631-638, 2010. https://doi.org/10.1016/j.trstmh.2010.07.002
  113. [113] N. Watts et al., “The 2020 report of the Lancet Countdown on health and climate change: Responding to converging crises,” The Lancet, Vol.397, No.10269, pp. 129-170, 2021. https://doi.org/10.1016/S0140-6736(20)32290-X
  114. [114] Pollution Control Department, Ministry of Natural Resources and Environment “Thailand’s Roadmap on Plastic Waste Management 2018-2030,” 2021.
  115. [115] Mahanakorn Partners Group, “The Bio-Circular-Green Economic Model,” 2021. https://mahanakornpartners.com/the-bio-circular-green-economic-model/ [Accessed July 23, 2025]
  116. [116] World Bank Group, “The World Bank in Thailand,” 2024. https://www.worldbank.org/en/country/thailand/overview [Accessed August 1, 2024]
  117. [117] Ministry of Foreign Affairs, Kingdom of Thailand, “The Prime Minister participated in the World Leaders Summit during the 26th United Nations Framework Convention on Climate Change Conference of the Parties (UNFCCC COP26) in Glasgow, United Kingdom,” 2021.
  118. [118] Office of Natural Resources and Environmental Policy and Planning, “Thailand’s Updated Nationally Determined Contribution,” 2020.
  119. [119] World Bank Group, “Thailand economic monitor: Thailand’s pathway to carbon neutrality: The role of carbon pricing,” 2023.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 31, 2025