single-jc.php

JACIII Vol.29 No.3 pp. 469-479
doi: 10.20965/jaciii.2025.p0469
(2025)

Research Paper:

Modified Maximum Likelihood Estimators for Logistic Distribution Using Ranked Set Samples

Zili Zhang ORCID Icon and Xinzi Wang

Research Center for Quantitative Economics, Huaqiao University
No.668 Jimei Avenue, Xiamen, Fujian 361021, China

Corresponding author

Received:
December 7, 2024
Accepted:
February 2, 2025
Published:
May 20, 2025
Keywords:
modified maximum likelihood estimator, location parameter, scale parameter, ranked set sampling, imperfect ranking
Abstract

In this article, the maximum likelihood estimators (MLE) and modified maximum likelihood estimators (MMLE) of the scale and location parameters for the logistic distribution applying simple random sampling (SRS) approach and different sampling schemes of ranked set sampling (RSS) are obtained. The corresponding MLE and MMLE using RSS when the ranking is imperfect are considered too.

Cite this article as:
Z. Zhang and X. Wang, “Modified Maximum Likelihood Estimators for Logistic Distribution Using Ranked Set Samples,” J. Adv. Comput. Intell. Intell. Inform., Vol.29 No.3, pp. 469-479, 2025.
Data files:
References
  1. [1] G. A. McIntyre, “A method for unbiased selective sampling, using ranked sets,” Australian J. of Agricultural Research, Vol.3, No.4, pp. 385-390, 1952. https://doi.org/10.1071/AR9520385
  2. [2] T. R. Dell and J. L. Clutter, “Ranked set sampling theory with order statistics background,” Biometrics, Vol.28, No.2, pp. 545-555, 1972. https://doi.org/10.2307/2556166
  3. [3] L. Strokes, “Parametric ranked set sampling,” Annals of the Institute of Statistical Mathematics, Vol.47, No.3, pp. 465-482, 1995. https://doi.org/10.1007/BF00773396
  4. [4] Z. Chen, “The efficiency of ranked-set sampling relative to simple random sampling under multi-parameter families,” Statistica Sinica, Vol.10, No.1, pp. 247-263, 2000.
  5. [5] J. T. Shiau, “Return period of bivariate distributed extreme hydrological events,” Stochastic Environmental Research and Risk Assessment, Vol.17, Nos.1-2, pp. 42-57, 2003. https://doi.org/10.1007/s00477-003-0125-9
  6. [6] A. M. Mathai, “Order statistics from a logistic distribution and applications to survival and reliability analysis,” IEEE Trans. on Reliability, Vol.52, No.2, pp. 200-206, 2003. https://doi.org/10.1109/TR.2003.813432
  7. [7] A. Brenning and D. Trombotto, “Logistic regression modeling of rock glacier and glacier distribution: Topographic and climatic controls in the semi-arid Andes,” Geomorphology, Vol.81, Nos.1-2, pp. 141-154, 2006. https://doi.org/10.1016/j.geomorph.2006.04.003
  8. [8] E. J. Gumbel, “Bivariate logistic distributions,” J. of the American Statistical Association, Vol.56, No.294, pp. 335-349, 1961. https://doi.org/10.2307/2282259
  9. [9] S. R. Bowling, M. T. Khasawneh, S. Kaewkuekool, and B. R. Cho, “A logistic approximation to the cumulative normal distribution,” J. of Industrial Engineering and Management, Vol.2, No.1, pp. 114-127, 2009. https://doi.org/10.3926/jiem..v2n1.p114-127
  10. [10] S. S. Gupta and M. Gnanadesikan, “Estimation of the parameters of the logistic distribution,” Biometrika, Vol.53, Nos.3-4, pp. 565-570, 1966. https://doi.org/10.2307/2333660
  11. [11] S. S. Gupta, A. S. Qureishi, and B. K. Shah, “Best linear unbiased estimators of the parameters of the logistic distribution using order statistics,” Technometrics, Vol.9, No.1, pp. 43-56, 1967. https://doi.org/10.2307/1266317
  12. [12] H. L. Harter and A. H. Moore, “Maximum-likelihood estimation, from censored samples, of the parameters of a logistic distribution,” J. of the American Statistical Association, Vol.62, No.318, pp. 675-684, 1967. https://doi.org/10.2307/2283994
  13. [13] W. A. Abu-Dayyeh, S. A. Al-Subh, and H. A. Muttlak, “Logistic parameters estimation using simple random sampling and ranked set sampling data,” Applied Mathematics and Computation, Vol.150, No.2, pp. 543-554, 2004. https://doi.org/10.1016/S0096-3003(03)00290-X
  14. [14] A. Asgharzadeh, L. Esmaily, and S. Nadarajah, “Approximate MLEs for the location and scale parameters of the skew logistic distribution,” Statistical Papers, Vol.54, No.2, pp. 391-411, 2013. https://doi.org/10.1007/s00362-012-0436-3
  15. [15] G. Zheng and M. F. Al-Saleh, “Modified maximum likelihood estimators based on ranked set samples,” Annals of the Institute of Statistical Mathematics, Vol.54, No.3, pp. 641-658, 2002. https://doi.org/10.1023/A:1022475413950
  16. [16] T. P. Hettmansperger, “The ranked-set sampling sign test,” J. of Nonparametric Statistics, Vol.4, No.3, pp. 263-270, 1995. https://doi.org/10.1080/10485259508832617
  17. [17] Z. Bai and Z. Chen, “On the theory of ranked-set sampling and its ramifications,” J. of Statistical Planning and Inference, Vol.109, Nos.1-2, pp. 81-99, 2003. https://doi.org/10.1016/S0378-3758(02)00302-6

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on May. 19, 2025