Letter:
Motion Hacking – Understanding by Controlling Animals –
Dai Owaki* and Volker Dürr**
*Department of Robotics, Graduate School of Engineering, Tohoku University
6-6-01 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
**Department of Biological Cybernetics, Faculty of Biology, Bielefeld University
25 Universitätsstr, Bielefeld D-33615, Germany
Insects exhibit resilient and flexible capabilities allowing them to adapt their walk in response to changes of the environment or body properties, for example the loss of a leg. While the motor control paradigm governing inter-leg coordination has been extensively studied in the past for such adaptive walking, the neural mechanism remains unknown. To overcome this situation, the project “Motion Hacking” develops a method for hacking leg movements by electrostimulating leg muscles while retaining the natural sensorimotor functions of the insect. This research aims to elucidate the flexible inter-leg coordination mechanism underlying insect walking by observing the adapting process of inter-leg coordination with the insect nervous system when leg movements are externally controlled via motion hacking.
- [1] M. J. Costello, M. Robert, M. May, and N. E. Stork, “Can we name earth’s species before they go extinct?,” Science, Vol.339, pp. 413-416, 2013.
- [2] B. Misof et al., “Phylogenomics resolves the timing and pattern of insect evolution,” Science, Vol.346, pp. 763-767, 2014.
- [3] A. Matsui and K. Yahata, “Comparative study of autotomic structures in centipedes Arthropoda Chilopoda,” Proc. Arthropod. Embryol. Soc. Jpn., Vol.47, pp. 11-19, 2012.
- [4] D. Owaki, H. Aonuma, Y. Sugimoto, and A. Ishiguro, “Leg amputation modifies coordinated activation of the middle leg muscles in the cricket Gryllus bimaculatus,” Sci. Rep., Vol.11, 1327, 2021.
- [5] G. M. Hughes, “The co-ordination of insect movements ii. the effect of limb amputation and the cutting of commissures in the cockroach (Blatta orientalis),” J. Exp. Biol., Vol.34, pp. 306-333, 1957.
- [6] M. Grabowska, E. Godlewska, J. Schmidt, and S. Daun-Gruhn, “Quadrupedal gaits in hexapod animals inter-leg coordination in free-walking adult stick insects,” J. Exp. Biol., Vol.215, pp. 4255-4266, 2012.
- [7] M. Niemeier, M. Jeschke, and V. Dürr, “Effect of thoracic connective lesion on inter-leg coordination in freely walking stick insects,” Front Bioeng Biotechnol., Vol.9, 628998, 2021.
- [8] K. Suzumori, “Plenary speakers: Soft robots as an e-kagen artifact,” Proc. of 2018 IEEE Int. Conf. on Soft Robotics (RoboSoft), Livorno, Italy, pp. 1-7, 2018.
- [9] D. Owaki, V. Dürr, and J. Schmitz, “Motion hacking: A method for interference with neural control of walking, based on external muscle stimulation in stick insects,” Proc. of The 13th Göttingen Meeting of the German Neuroscience Society, Göttingen, Germany, 2019.
- [10] R. Pfeifer and J. Bongard, “How the Body Shapes the Way We Think: A New View of Intelligence,” The MIT Press, Cambridge, MA, 2006.
- [11] D. Owaki and A. Ishiguro, “A quadruped robot exhibiting spontaneous gait transitions from walking to trotting to galloping,” Sci. Rep., Vol.7, 277, 2017.
- [12] D. Owaki, M. Goda, S. Miyazawa, and A. Ishiguro, “A minimal model describing hexapedal interlimb coordination: the tegotae-based approach,” Front. Neurorobot., Vol.11, 29, 2017.
- [13] K. Yasui, K. Sakai, T. Kano, D. Owaki, and A. Ishiguro, “Decentralized control scheme for myriapod robot inspired by adaptive and resilient centipede locomotion,” PLOS ONE, Vol.12, No.2, e0171421, 2017.
- [14] D. Owaki, S. Horikiri, J. Nishii, and A. Ishiguro, “Tegotae-based control produces adaptive inter- and intra-limb coordination in bipedal walking,” Front. Neurorobot., Vol.15, 629595, 2020.
- [15] N. W. Schultheiss, A. A. Prinz, and R. J. Butera, “Phase Response Curves in Neuroscience: Theory, Experiment, and Analysis (Springer Series in Computational Neuroscience, 6),” Springer, Switzerland AG, 2011.
- [16] K. Nakajima and I. Fischer, “Reservoir Computing: Theory, Physical Implementations, and Applications (Natural Computing Series),” Springer, Switzerland AG, 2021.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.