single-rb.php

JRM Vol.33 No.2 pp. 196-204
doi: 10.20965/jrm.2021.p0196
(2021)

Review:

Aerial Manipulation Using Multirotor UAV: A Review from the Aspect of Operating Space and Force

Robert Ladig, Hannibal Paul, Ryo Miyazaki, and Kazuhiro Shimonomura

Ritsumeikan University
1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan

Received:
September 30, 2020
Accepted:
February 3, 2021
Published:
April 20, 2021
Keywords:
multirotor UAV, aerial manipulation, tasks in high altitude, physical interaction
Abstract

Aerial manipulation: physical interaction with the environment by using a robotic manipulator attached to the airframe of an aerial robot. In the future one can expect that aerial manipulation will greatly extend the range of possible applications for mobile robotics, especially multirotor UAVs. This can range from inspection and maintenance of previously hard to reach pieces of infrastructure, to search and rescue applications. What kind of manipulator is attached to what position of the airframe is a key point in accomplishing the aerial robot’s function and in the past, various aerial manipulation solutions have been proposed. This review paper gives an overview of the literature on aerial manipulation that have been proposed so far and classifies them by configuration of the workspace and function.

Aerial manipulators using multirotor UAV

Aerial manipulators using multirotor UAV

Cite this article as:
R. Ladig, H. Paul, R. Miyazaki, and K. Shimonomura, “Aerial Manipulation Using Multirotor UAV: A Review from the Aspect of Operating Space and Force,” J. Robot. Mechatron., Vol.33 No.2, pp. 196-204, 2021.
Data files:
References
  1. [1] K. Nonami, “Research and Development of Drone and Roadmap to Evolution,” J. Robot. Mechatron., Vol.30, No.3, pp. 322-336, 2018.
  2. [2] K. Nonami, “Drone Technology, Cutting-Edge Drone Business, and Future Prospects,” J. Robot. Mechatron., Vol.28, No.3, pp. 262-272, 2016.
  3. [3] F. Ruggiero, V. Lippiello, and A. Ollero, “Aerial Manipulation: A Literature Review,” IEEE Robotics and Automation Letters, Vol.3, No.3, pp. 1957-1964, 2018.
  4. [4] X. Ding, P. Guo, K. Xu, and Y. Yu, “A review of aerial manipulation of small-scale rotorcraft unmanned robotic systems,” Chinese J. of Aeronautics, Vol.32, No.1, pp. 200-214, 2019.
  5. [5] J. Mendoza-Mendoza, V. J. Gonzalez-Villela, C. Aguilar-Ibanez, M. S. Suarez-Castanon, and L. Fonseca-Ruiz, “Snake Aerial Manipulators: A Review,” IEEE Access, Vol.8, pp. 28222-28241, 2020.
  6. [6] D. Mellinger, Q. Lindsey, M. Shomin, and V. Kumar, “Design, Modeling, Estimation and Control for Aerial Grasping and Manipulation,” Proc. of 2011 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2668-2673, 2011.
  7. [7] C. M. Korpela, T. W. Danko, and P. Y. Oh, “MM-UAV: Mobile Manipulating Unmanned Aerial Vehicle,” J. Intell. Robot. Syst., Vol.65, pp. 93-101, 2012.
  8. [8] N. Michael, J. Fink, and V. Kumar, “Cooperative manipulation and transportation with aerial robots,” Autonomous Robots, Vol.30, pp. 73-86, 2011.
  9. [9] M. Bernard and K. Kondak, “Generic Slung Load Transportation System Using Small Size Helicopters,” Proc. 2009 IEEE Int. Conf. on Robotics and Automation, pp. 3258-3264, 2009.
  10. [10] E. W. Hawkes, D. L. Christensen, E. V. Eason, M. A. Estrada, M. Heverly, E. Hilgemann, H. Jiang, M. T. Pope, A. Parness, and M. R. Cutkosky, “Dynamic Surface Grasping with Directional Adhesion,” Proc. of 2013 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 5487-5493, 2013.
  11. [11] P. E. I. Pounds, D. R. Bersak, and A. M. Dollar, “Grasping From the Air: Hovering Capture and Load Stability,” Proc. of 2011 IEEE Int. Conf. on Robotics and Automation, pp. 2491-2498, 2011.
  12. [12] F. Huber, K. Kondak, K. Krieger, D. Sommer, M. Schwarzbach, M. Laiacker, I. Kossyk, S. Parusel, S. Haddadin, and A. Albu-Schaffer, “First Analysis and Experiments in Aerial Manipulation Using Fully Actuated Redundant Robot Arm,” Proc. of 2013 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3452-3457, 2013.
  13. [13] T. W. Danko, K. P. Chaney, and P. Y. Oh, “A parallel manipulator for mobile manipulating UAVs,” IEEE Int. Conf. on Technologies for Practical Robot Applications (TePRA), pp. 1-6, 2015.
  14. [14] R. Cano, C. Pérez, F. Pruano, A. Ollero, and G. Heredia, “Mechanical design of a 6-DOF aerial manipulator for assembling bar structures using UAVs,” 2nd RED-UAS 2013 Workshop on Research Education and Development of Unmanned Aerial Systems, pp. 1-7, 2014.
  15. [15] X. Meng, Y. He, F. Gu, L. Yang, B. Dai, Z. Liu, and J. Han, “Design and implementation of rotor aerial manipulator system,” IEEE Int. Conf. on Robotics and Biomimetics (ROBIO), pp. 673-678, 2016.
  16. [16] C. D. Bellicoso, L. R. Buonocore, V. Lippiello, and B. Siciliano, “Design, modeling and control of a 5-DoF light-weight robot arm for aerial manipulation,” Mediterranean Conf. on Control and Automation (MED), pp. 853-858, 2015.
  17. [17] D. Wuthier, D. Kominiak, C. Kanellakis, G. Andrikopoulos, M. Fumagalli, G. Schipper, and G. Nikolakopoulos, “On the design, modeling and control of a novel compact aerial manipulator,” Mediterranean Conf. on Control and Automation (MED), pp. 665-670, 2016.
  18. [18] K. Kondak, F. Huber, M. Schwarzbach, M. Laiacker, D. Sommer, M. Bejar, and A. Ollero, “Aerial manipulation robot composed of an autonomous helicopter and a 7 degrees of freedom industrial manipulator,” IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 2107-2112, 2014.
  19. [19] F. Ruggiero et al., “A multilayer control for multirotor UAVs equipped with a servo robot arm,” 2015 IEEE Int. Conf. on Robotics and Automation (ICRA), Seattle, WA, pp. 4014-4020, 2015.
  20. [20] S. Kim, H. Seo, S. Choi, and H. J. Kim, “Vision-Guided Aerial Manipulation Using a Multirotor With a Robotic Arm,” IEEE/ASME Trans. on Mechatronics, Vol.21, No.4, pp. 1912-1923, Aug. 2016.
  21. [21] Y. Ohnishi, T. Takaki, T. Aoyama, and I. Ishii, “Development of a 4-Joint 3-DOF robotic arm with anti-reaction force mechanism for a multicopter,” Proc. of 2017 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 985-991, 2017.
  22. [22] M. Tognon et al., “A Truly-Redundant Aerial Manipulator System With Application to Push-and-Slide Inspection in Industrial Plants,” IEEE Robotics and Automation Letters, Vol.4, No.2, pp. 1846-1851, April 2019.
  23. [23] A. Suarez, P. R. Soria, G. Heredia, B. C. Arrue, and A. Ollero, “Anthropomorphic, compliant and lightweight dual arm system for aerial manipulation,” 2017 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Vancouver, BC, pp. 992-997, 2017.
  24. [24] C. Korpela, M. Orsag, and P. Oh, “Towards Valve Turning using a Dual-Arm Aerial Manipulator,” Proc. of 2014 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3411-3416, 2014.
  25. [25] P. Grau, A. Suarez, V. M. Vega, A. Rodriguez-Castaño, and A. Ollero, “Design of a High Performance Dual Arm Aerial Manipulator,” Iberian Robotics Conf., pp. 730-741, 2017.
  26. [26] A. Suarez, A. E. Jimenez-Cano, V. M. Vega, G. Heredia, A. Rodriguez-Castaño, and A. Ollero, “Lightweight and human-size dual arm aerial manipulator,” Int. Conf. on Unmanned Aircraft Systems (ICUAS), pp. 1778-1784, 2017.
  27. [27] A. Suarez, G. Heredia, and A. Ollero, “Design of an anthropomorphic, compliant, and lightweight dual arm for aerial manipulation,” IEEE Access, Vol.6, pp. 29173-29189, 2018.
  28. [28] Y. S. Sarkisov, G. A. Yashin, E. V. Tsykunov, and D. Tsetserukou, “DroneGear: A Novel Robotic Landing Gear With Embedded Optical Torque Sensors for Safe Multicopter Landing on an Uneven Surface,” IEEE Robotics and Automation Letters, Vol.3, No.3, pp. 1912-1917, 2018.
  29. [29] T. Doi, K. Miyata, T. Sasagawa, and K. Tadakuma, “Multi-Leg System for Aerial Vehicles,” J. Robot. Mechatron., Vol.24, No.1, pp. 174-179, 2012.
  30. [30] H. Paul, R. Miyazaki, R. Ladig, and K. Shimonomura, “Landing of a Multirotor Aerial Vehicle on an Uneven Surface Using Multiple On-board Manipulators,” Proc. of 2019 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS2019), pp. 1926-1933, 2019.
  31. [31] H. Paul, R. Miyazaki, R. Ladig, and K. Shimonomura, “TAMS: Development of a Multipurpose Three-arm Aerial Manipulator System,” Advanced Robotics, Vol.35, No.1, pp. 31-47, 2021.
  32. [32] A. E. Jimenez-Cano, J. Braga, G. Heredia, and A. Ollero, “Aerial Manipulator for Structure Inspection by Contact from the Underside,” Proc. of 2015 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1879-1884, 2015.
  33. [33] J. Thomas, G. Loianno, K. Daniilidis, and V. Kumar, “Visual Servoing of Quadrotors for Perching by Hanging From Cylindrical Objects,” IEEE Robotics and Automation Letters, Vol.1, No.1, pp. 57-64, 2016.
  34. [34] T. Ikeda, S. Yasui, S. Minamiyama, K. Ohara, S. Ashizawa, A. Ichikawa, A. Okino, T. Oomichi, and T. Fukuda, “Stable impact and contact force control by UAV for inspection of floor slab of bridge,” Advanced Robotics, Vol.32, No.19, pp. 1061-1076, 2018.
  35. [35] J. Molina and S. Hirai, “Kinematic Analysis of a Novel Skew-gripper for Aerial Pruning Tasks,” 2017 3rd Int. Conf. on Mechatronics and Robotics Engineering (ICMRE 2017), pp. 134-138, 2017.
  36. [36] A. E. Jimenez-Cano, J. Braga, G. Heredia, and A. Ollero, “Aerial Manipulator for Structure Inspection by Contact from the Underside,” Proc. of 2015 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS2015), pp. 1879-1884, 2015.
  37. [37] A. Ichikawa, Y. Abe, T. Ikeda, K. Ohara, J. Kishikawa, S. Ashizawa, T. Oomichi, A. Okino, and T. Fukuda, “UAV with manipulator for bridge inspection – Hammering system for mounting to UAV,” IEEE/SICE Int. Symposium on System Integration (SII), pp. 775-780, 2017.
  38. [38] A. E. Jimenez-Cano, G. Heredia, and A. Ollero, “Aerial manipulator with a compliant arm for bridge inspection,” Int. Conf. on Unmanned Aircraft Systems (ICUAS), pp. 1217-1222, 2017.
  39. [39] B. B. Kocer, T. Tjahjowidodo, M. Pratama, and G. G. L. Seet, “Inspection-while-flying: An autonomous contact-based nondestructive test using uav-tools,” Automation in Construction, Vol.106, 102895, 2019.
  40. [40] S. Shimahara, R. Ladig, L. Suphachart, S. Hirai, and K. Shimonomura, “Aerial manipulation for the workspace above the airframe,” Proc. of 2015 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS2015), pp. 1453-1458, 2015.
  41. [41] S. Shimahara, L. Suphachart, R. Ladig, and K. Shimonomura, “Aerial torsional manipulation employing multirotor flying robot,” Proc. of 2016 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS2016), pp. 1595-1600, 2016.
  42. [42] R. Ladig and K. Shimonomura, “High precision marker based localization and movement on the ceiling employing an aerial robot with top mounted omni wheel drive system,” Proc. of 2016 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS2016), pp. 3081-3086, 2016.
  43. [43] M. Fumagalli, R. Naldi, A. Macchelli, R. Carloni, S. Stramigioli, and L. Marconi, “Modeling and Control of a Flying Robot for Contact Inspection,” Proc. of 2012 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3532-3537, 2012.
  44. [44] T. Bartelds, A. Capra, S. Hamaza, S. Stramigioli, and M. Fumagalli, “Compliant Aerial Manipulators: Toward a New Generation of Aerial Robotic Workers,” IEEE Robotics and Automation Letters, Vol.1, No.1, pp. 477-483, Jan. 2016.
  45. [45] H. W. Wopereis, J. J. Hoekstra, T. H. Post, G. A. Folkertsma, S. Stramigioli, and M. Fumagalli, “Application of substantial and sustained force to vertical surfaces using a quadrotor,” 2017 IEEE Int. Conf. on Robotics and Automation (ICRA), Singapore, pp. 2704-2709, 2017.
  46. [46] H. W. Wopereis, J. J. Hoekstra, T. H. Post, G. A. Folkertsma, S. Stramigioli, and M. Fumagalli, “Application of Substantial and Sustained Force to Vertical Surfaces using a Quadrotor,” Proc. of 2017 IEEE Int. Conf. on Robotics and Automation, pp. 2704-2709, 2017.
  47. [47] S. Liu, W. Dong, Z. Ma, and X. Sheng, “Adaptive Aerial Grasping and Perching With Dual Elasticity Combined Suction Cup,” IEEE Robotics and Automation Letters, Vol.5, No.3, pp. 4766-4773, July 2020.
  48. [48] D. Tzoumanikas, F. Graule, Q. Yan, D. Shah, M. Popovic, and S. Leutenegger, “Aerial Manipulation Using Hybrid Force and Position NMPC Applied to Aerial Writing,” Robotics: Science and Systems, July 2020.
  49. [49] J. Scholten, M. Fumagalli, S. Stramigioli, and R. Carloni, “Interaction control of an UAV endowed with a manipulator,” IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 4910-4915, 2013.
  50. [50] T. Ikeda, S. Yasui, M. Fujihara, K. Ohara, S. Ashizawa, A. Ichikawa, A. Okino, T. Oomichi, and T. Fukuda, “Wall contact by octo-rotor UAV with one DoF manipulator for bridge inspection,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 5122-5127, 2017.
  51. [51] M. J. Kim, K. Kondak, and C. Ott, “A stabilizing controller for regulation of uav with manipulator,” IEEE Robotics and Automation Letters, Vol.3, No.3, pp. 1719-1726, 2018.
  52. [52] A. Q. Keemink, M. Fumagalli, S. Stramigioli, and R. Carloni, “Mechanical design of a manipulation system for unmanned aerial vehicles,” IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 3147-3152, 2012.
  53. [53] M. Fumagalli, R. Naldi, A. Macchelli, F. Forte, A. Q. Keemink, S. Stramigioli, R. Carloni, and L. Marconi, “Developing an aerial manipulator prototype: Physical interaction with the environment,” IEEE Robotics and Automation Magazine, Vol.21, No.3, pp. 41-50, 2014.
  54. [54] A. Albers, S. Trautmann, T. Howard, T. A. Nguyen, M. Frietsch, and C. Sauter, “Semi-autonomous flying robot for physical interaction with environment,” IEEE Conf. on Robotics, Automation and Mechatronics, pp. 441-446, 2010.
  55. [55] M. Fumagalli, S. Stramigioli, and R. Carloni, “Mechatronic design of a robotic manipulator for unmanned aerial vehicles,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 4843-4848, 2016.
  56. [56] R. Miyazaki, R. Jiang, H. Paul, K. Ono, and K. Shimonomura, “Airborne docking for multirotor aerial manipulation,” Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 4708-4714, 2018.
  57. [57] J. M. Gomez-de-Gabriel, J. M. Gandarias, F. J. Perez-Maldonado, F. J. Garcia-Nunez, E. J. Fernandez-Garcia, and A. J. Garcia-Cerezo, “Methods for autonomous wristband placement with a search-and-rescue aerial manipulator,” Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 7838-7844, 2018.
  58. [58] S. Kim, D. Lee, G. Jung, and K. Cho, “An origami-inspired, self-locking robotic arm that can be folded flat,” Science Robotics, Vol.3, Issue 16, eaar2915, 2018.
  59. [59] A. Suarez, P. Sanchez-Cuevas, M. Fernandez, M. Perez, G. Heredia, and A. Ollero, “Lightweight and Compliant Long Reach Aerial Manipulator for Inspection Operations,” 2018 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Madrid, pp. 6746-6752, 2018.
  60. [60] A. Suarez, F. Real, V. M. Vega, G. Heredia, A. Rodriguez-Castaño, and A. Ollero, “Compliant Bimanual Aerial Manipulation: Standard and Long Reach Configurations,” IEEE Access, Vol.8, pp. 88844-88865, 2020.
  61. [61] J. Zeng, P. Kotaru, M. W. Mueller, and K. Sreenath, “Differential Flatness Based Path Planning With Direct Collocation on Hybrid Modes for a Quadrotor With a Cable-Suspended Payload,” IEEE Robotics and Automation Letters, Vol.5, No.2, pp. 3074-3081, 2020.
  62. [62] A. Caballero, P. J. Sanchez-Cuevas, M. Bejar, G. Heredia, M. A. Trujillo, and A. Ollero, “An Aerodynamic Extension for Motion Planning with Dynamics Awareness in Aerial Long-Reach Manipulators,” Int. J. of Aerospace Engineering, Vol.2020, Article ID 6348035, pp. 1-17, 2020.
  63. [63] A. Caballero, M. Bejar, A. Rodriguez-Castaño, and A. Ollero, “Motion planning for long reach manipulation in aerial robotic systems with two arms,” European Conf. on Mobile Robots (ECMR), pp. 1-7, 2017.
  64. [64] Y. S. Sarkisov, M. J. Kim, D. Bicego, D. Tsetserukou, C. Ott, A. Franchi, and K. Kondak, “Development of SAM: cable-Suspended Aerial Manipulator,” IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 5323-5329, 2019.
  65. [65] J. Lee, R. Balachandran, Y. S. Sarkisov, M. D. Stefano, A. Coelho, K. Shinde, M. J. Kim, R. Triebel, and K. Kondak, “Visual-Inertial Telepresence for Aerial Manipulation,” IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 1222-1229, 2020.
  66. [66] Y. S. Sarkisov, M. J. Kim, A. Coelho, D. Tsetserukou, C. Ott, and K. Kondak, “Optimal Oscillation Damping Control of cable-Suspended Aerial Manipulator with a Single IMU Sensor,” IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 5349-5355, 2020.
  67. [67] R. Miyazaki, R. Jiang, H. Paul, Y. Huang, and K. Shimonomura, “Long-Reach Aerial Manipulation Employing Wire-Suspended Hand with Swing-Suppression Device,” IEEE Robotics and Automation Letters, Vol.4, No.3, pp. 3045-3052, 2019.
  68. [68] R. Miyazaki, H. Paul, T. Kominami, and K. Shimonomura, “Wire-Suspended Device Control Based on Wireless Communication with Multirotor for Long Reach-Aerial Manipulation,” IEEE Access, Vol.8, pp. 172096-172104, 2020.
  69. [69] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor,” IEEE Robotics and Automation Magazine, Vol.19, No.3, pp. 20-32, 2012.
  70. [70] K. Nonami, F. Kendoul, S. Suzuki, W. Wang, and D. Nakazawa, “Autonomous Flying Robots, Unmanned Aerial Vehicles and Micro Aerial Vehicles,” Springer-Verlag, 2010.
  71. [71] H. Nakanishi and H. Hashimoto, “AR-Marker/IMU Hybrid Navigation System for Tether-Powered UAV,” J. Robot. Mechatron., Vol.30, No.1, pp. 76-85, 2018.
  72. [72] J. Thomas, G. Loianno, K. Sreenath, and V. Kumar, “Toward Image Based Visual Servoing for Aerial Grasping and Perching,” IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 2113-2118, 2014.
  73. [73] C. Luo, L. Yu, and P. Ren, “A Vision-Aided Approach to Perching a Bioinspired Unmanned Aerial Vehicle,” IEEE Trans. on Industrial Electronics, Vol.65, No.5, pp. 3976-3984, May 2018.
  74. [74] K. M. Popek, M. S. Johannes, K. C. Wolfe, R. A. Hegeman, J. M. Hatch, J. L. Moore, K. D. Katyal, B. Y. Yeh, and R. J. Bamberger, “Autonomous Grasping Robotic Aerial System for Perching (AGRASP),” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 6220-6225, 2018.
  75. [75] T. Lin, S. Long, and K. A. Stol, “Automated Perching of a Multirotor UAV atop Round Timber Posts,” Proc. of 2018 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics (AIM 2018), pp. 486-491, 2018.
  76. [76] W. Chi, K. Low, K. Hoon, J. Tang, and T. Go, “A Bio-Inspired Adaptive Perching Mechanism for Unmanned Aerial Vehicles,” J. Robot. Mechatron., Vol.24, No.4, pp. 642-648, 2012.
  77. [77] A. Lopez-Lora, P. J. Sanchez-Cuevas, A. Suarez, A. Garofano-Soldado, A. Ollero, and G. Heredia, “MHYRO: Modular HYbrid RObot for contact inspection and maintenance in oil & gas plants,” Proc. of 2020 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS2020), pp. 1268-1275, 2020.
  78. [78] K. Yanagimura, K. Ohno, Y. Okada, E. Takeuchi, and S. Tadokoro, “Hovering of MAV by using magnetic adhesion and winch mechanism,” Proc. 2014 IEEE Int. Conf. on Robotics and Automation, pp. 6250-6257, 2014.
  79. [79] H. Paul, K. Ono, R. Ladig, and K. Shimonomura, “A Multirotor Platform Employing a Three-Axis Vertical Articulated Robotic Arm for Aerial Manipulation Tasks,” Proc. of 2018 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics (AIM 2018), pp. 478-485, 2018.
  80. [80] H. W. Wopereis, T. D. van der Molen, T. H. Post, S. Stramigioli, and M. Fumagalli, “Mechanism for Perching on Smooth Surfaces using Aerial Impacts,” IEEE Int. Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 154-159, 2016.
  81. [81] M. T. Pope et al., “A Multimodal Robot for Perching and Climbing on Vertical Outdoor Surfaces,” IEEE Trans. on Robotics, Vol.33, No.1, pp. 38-48, Feb. 2017.
  82. [82] H. Tsukagoshi, M. Watanabe, T. Hamada, D. Ashlih, and R. Iizuka, “Aerial manipulator with perching and door-opening capability,” 2015 IEEE Int. Conf. on Robotics and Automation (ICRA), Seattle, WA, pp. 4663-4668, 2015.
  83. [83] M. A. Estrada, S. Mintchev, D. L. Christensen, M. R. Cutkosky, and D. Floreano, “Forceful manipulation with micro air vehicles,” Science Robotics, Vol.3, eaau6903, 2018.
  84. [84] A. Oosedo, S. Abiko, S. Narasaki, A. Kuno, A. Konno, and M. Uchiyama, “Large attitude change flight of a quad tilt rotor unmanned aerial vehicle,” Advanced Robotics, Vol.30, No.5, pp. 326-337, 2016.
  85. [85] D. Brescianini and R. D’Andrea, “Design, modeling and control of an omni-directional aerial vehicle,” IEEE Int. Conf. on Robotics and Automation, pp. 3261-3266, May 2016.
  86. [86] M. Kamel, S. Verling, O. Elkhatib, C. Sprecher, P. Wulkop, Z. Taylor, R. Siegwart, and I. Gilitschenski, “The Voliro Omniorientational Hexacopter: An Agile and Maneuverable Tiltable-Rotor Aerial Vehicle,” IEEE Robotics and Automation Magazine, Vol.25, Issue 4, pp. 34-44, 2018.
  87. [87] M. Ryll, G. Muscio, F. Pierri, E. Cataldi, G. Antonelli, F. Caccavale, D. Bicego, and A. Franchi, “6D interaction control with aerial robots: The flying end-effector paradigm,” The Int. J. of Robotics Research, Vol.38, No.9, pp. 1045-1062, 2019.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Dec. 13, 2024