Paper:
Autonomous Mobile Robot for Outdoor Slope Using 2D LiDAR with Uniaxial Gimbal Mechanism
Shunya Hara*, Toshihiko Shimizu*, Masanori Konishi*, Ryotaro Yamamura*, and Shuhei Ikemoto**
*Kobe City College of Technology
8-3 Gakuen-Higashimachi, Nishi-ku, Kobe 651-2194, Japan
**Graduate School of Life Science and Systems Engineering, Kyusyu Institute of Technology
2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0196, Japan
The Nakanoshima Challenge is a contest for developing sophisticated navigation systems of robots for collecting garbage in outdoor public spaces. In this study, a robot named Navit(oo)n is designed, and its performance in public spaces such as city parks is evaluated. Navit(oo)n contains two 2D LiDAR scanners with uniaxial gimbal mechanism, improving self-localization robustness on a slope. The gimbal mechanism adjusts the angle of the LiDAR scanner, preventing erroneous ground detection. We evaluate the navigation performance of Navit(oo)n in the Nakanoshima and its Extra Challenges.
- [1] R. Sakai, S. Katsumata, T. Miki, T. Yano, W. Wei, Y. Okadome, N. Chihara, N. Kimura, Y. Nakai, I. Matsuo, and T. Shimizu, “A mobile dual-arm manipulation robot system for stocking and disposing of items in a convenience store by using universal vacuum grippers for grasping items,” Advanced Robotics, Vol.34, Nos.3-4, pp. 219-234, 2020.
- [2] I. Matsuo, T. Shimizu, Y. Nakai, M. Kakimoto, Y. Sawasaki, Y. Mori, T. Sugano, S. Ikemoto, and T. Miyamoto, “Q-bot: heavy object carriage robot for in-house logistics based on universal vacuum gripper,” Advanced Robotics, Vol.34, Nos.3-4, pp. 173-188, 2020.
- [3] J. Shintake, V. Cacucciolo, D. Floreano, and H. Shea, “Soft robotic grippers,” Advanced Materials, Vol.30, 1707035, 2018.
- [4] T. Watanabe, K. Yamazaki, and Y. Yokokohji, “Survey of robotic manipulation studies intending practical applications in real environments – object recognition, soft robot hand, and challenge program and benchmarking –,” Advanced Robotics, Vol.31, pp. 1114-1132, 2017.
- [5] E. Brown, N. Rodenberg, J. Amend, A. Mozeika, E. Steltz, M. R. Zakin, H. Lipson, and H. M. Jaeger, “Universal robotic gripper based on the jamming of granular material,” Proc. of the National Academy of Sciences, Vol.107, pp. 18809-18814, 2010.
- [6] J. R. Amend, Jr, E. Brown, N. Rodenberg, H. M. Jaeger, and H. Lipson, “A Positive Pressure Universal Gripper Based on the Jamming of Granular Material,” IEEE Trans. on Robotics, Vol.28, pp. 341-350, 2012.
- [7] J. Amend, N. Chang, S. Fakhouri, and B. Culley, “Soft Robotics Commercialization: Jamming Grippers from Research of Product,” Soft Robotics, Vol.3, pp. 213-222, 2016.
- [8] M. Fujita, K. Tadakuma, H. Komatsu, E. Takane, A. Nomura, T. Ichimura, M. Konyo, and S. Tadokoro, “Jamming layered membrane gripper mechanism for grasping differently shaped-objects without excessive pushing force for search and rescue missions,” Advanced Robotics, Vol.32, No.11, pp. 590-604, 2018.
- [9] M. Fujita, S. Ikeda, T. Fujimoto, T. Shimizu, S. Ikemoto, and T. Miyamoto, “Development of universal vacuum gripper for wall-climbing robot,” Advanced Robotics, Vol.32, No.6, pp. 283-296, 2018.
- [10] T. Tomokazu, S. Kikuchi, M. Suzuki, and S. Aoyagi, “Vacuum gripper imitated octopus sucker-effect of liquid membrane for absorption,” 2015 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 2929-2936, 2015.
- [11] K. Inoue, S. A. Rahok, and K. Ozaki, “Proposal and consideration of design policy for autonomous mobile robots in real world robot challenge,” J. of the Robotics Society of Japan, Vol.30, pp. 234-244, 2018 (in Japanese).
- [12] T. Yoshida, K. Irie, E. Koyanagi, and M. Tomono, “An Outdoor Navigation Platform with a 3D Scanner and Gyro-assisted Odometry,” Trans. of the Society of Instrument and Control Engineers, Vol.47, pp. 493-500, 2011 (in Japanese).
- [13] N. Kimura and J. Ota, “Unknown object detection using floor height map for mobile robots on indoor floor with non-horizontal partial areas,” J. of the Robotics Society of Japan, Vol.34, pp. 699-710, 2011 (in Japanese).
- [14] S. Thrun, “Probabilistic robotics,” Communications of the ACM, Vol.45, No.3, pp. 52-57, 2002.
- [15] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping with Rao-Blackwellized particle filters,” IEEE Trans. on Robotics, Vol.23, No.1, pp. 34-46, 2007.
- [16] S. Nakamura, T. Hasegawa, T. Hiraoka, and Y. Ochiai, “Person searching through an omnidirectional camera using CNN in the Tsukuba Challenge,” J. Robot. Mechatron., Vol.30, No.4, pp. 540-551, 2018.
- [17] Y. Kanuki and N. Ohta, “Development of Autonomous Robot with Simple Navigation System for Tsukuba Challenge 2015,” J. Robot. Mechatron., Vol.28, No.4, pp. 432-440, 2016.
- [18] J. Redmon and A. Angelova, “Real-time grasp detection using convolutional neural networks,” Proc. of the 2015 IEEE Int. Conf. on Robotics and Automation (ICRA), 2015.
- [19] R. Joseph, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, pp. 779-788, 2016.
- [20] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv: 1804.02767, 2018.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.