Review:
A Simple, Natural and Effective Framework of Nonlinear Systems Control and its Application to Aerial Robots
Motoyasu Tanaka*, Hiroshi Ohtake**, and Kazuo Tanaka*
*The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
**Kyushu Institute of Technology, 680-4 Kawatsu, Izuka, Fukuoka 820-8502, Japan
- [1] K. Tanaka and H. O. Wang, “Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach,” JOHNWILEY & SONS, INC, 2001.
- [2] T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and Its Applications to Modeling and Control,” IEEE Trans. on SMC Vol.15, No.1, pp. 116-132, 1985.
- [3] K. Tanaka and M. Sugeno, “Stability Analysis of Fuzzy Systems Using Lyapunov’s Direct Method,” Proc. of NAFIPS’90, Toronto, Ontario, pp. 133-136, June 1990.
- [4] K. Tanaka and M. Sugeno, “Stability Analysis and Design of Fuzzy Control Systems,” FUZZY SETS AND SYSTEMS, Vol.45, No.2, pp. 135-156, 1992.
- [5] D. Filev, “Algebraic Design of Fuzzy Logic Controllers,” Proc. of 1996 IEEE Int. Symposium on Intelligent Control, Dearborn, MI, pp. 253-258, Sep. 1996.
- [6] G. Feng, “A Survey on Analysis and Design of Model-Based Fuzzy Control Systems,” IEEE Trans. on Fuzzy Systems, Vol.14, No.5, pp. 676-697, Oct. 2006.
- [7] H. O.Wang et al., “T-S fuzzy Model with Linear Rule Consequence and PDC Controller: A Universal Framework for Nonlinear Control Systems,” 9th IEEE Int. Conf. on Fuzzy Systems, San Antonio, pp. 549-554, May 2000.
- [8] R. Sepulcher, M. Jankovic, and P. Kokotovic, “Constructive Nonlinear Control,” Springer, 1997.
- [9] H. O. Wang et al., “An Approach to Fuzzy Control of Nonlinear Systems,” IEEE Trans. on Fuzzy Systems, Vol.4, No.1, pp. 14-23, Feb. 1996.
- [10] H. O. Wang, K. Tanaka, and M. Griffin, “Parallel Distributed Compensation of Nonlinear Systems by Takagi and Sugeno’s Fuzzy Model,” Proc. of FUZZ-IEEE’95, pp. 531-538, 1995.
- [11] H. O. Wang, K. Tanaka, and M. Griffin, “An Approach to Fuzzy Control of Nonlinear Systems: Stability and Design Issues,” IEEE Trans. on Fuzzy Systems, Vol.4, No.1, pp. 14-23, 1996.
- [12] L. Xie, S. Shishkin, and M. Fu, “Piecewise Lyapunov functions for robust stability of linear time-varying systems,” Syst. Control Lett., Vol.31, pp. 165-171, 1997.
- [13] K. Tanaka, H. Ohtake, and H. O. Wang, “A Descriptor System Approach to Fuzzy Control System Design via Fuzzy Lyapunov Functions,” IEEE Trans. on Fuzzy Systems, Vol.15, No.3, pp. 333-341, June 2007.
- [14] H. Ohtake, K. Tanaka, and H. O. Wang, “Switching Fuzzy Controller Design based on Switching Lyapunov Function for a Class of Nonlinear Systems,” IEEE Trans. on Systems, Man, and Cybernetics Part B, Vol.36, No.1, pp. 13-23, Feb. 2006.
- [15] Y.-J. Chen, H. Ohtake, K. Tanaka, W.-J. Wang, and H. O. Wang, “Relaxed Stabilization Criterion for T-S Fuzzy Systems by Minimum-type Piecewise Lyapunov Function Based Switching Fuzzy Controller,” IEEE Trans. on Fuzzy Systems, Vol.20, No.6, pp. 1166-1173, 2012.
- [16] K. Tanaka, T. Hori, and H. O. Wang, “A Multiple Lyapunov Function Approach to Stabilization of Fuzzy Control Systems,” IEEE Trans. on Fuzzy Systems, Vol.11, No.4, pp. 582-589, August 2003.
- [17] S. Boyd et al., “Linear Matrix Inequalities in Systems and Control Theory,” SIAM, Philadelphia, 1994.
- [18] Y. Nesterov and A. Nemirovsky, “Interior-point polynomial methods in convex programming,” SIAM, Philadelphia, PA, 1994.
- [19] K. Tanaka, S. Hori, and H. O. Wang, “Multi-objective Control of a Vehicle with Triple Trailers,” IEEE/ASME Trans. onMechatronics, Vol.7, No.3, pp. 357-368, 2002.
- [20] K. Tanaka, M. Nishimura, and H. O.Wang, “Multi-objective Fuzzy Control of High Rise/High Speed Elevators using LMIs,” 1998 American Control Conf., pp. 3450-3454, 1998.
- [21] J. Li, D. Niemann, H. O.Wang, and K. Tanaka, “Parallel Distributed Compensation for Takagi-Sugeno Fuzzy Models: Multiobjective Controller Design,” 1999 American Control Conf., pp. 1832-1836, June 1999.
- [22] K. Tanaka, H. Ohtake, and T. Hori, “Stable Control for R/C Helicopter,” Joint 9th IFSA World Congress and 20th NAFIPS Int. Conf., pp. 2056-2061, July 2001.
- [23] K. Tanaka, H. Ohtake, and H. O. Wang, “Guaranteed Cost Control of Polynomial Fuzzy Systems via a Sum of Squares Approach,” IEEE Trans. on Systems, Man and Cybernetics Part B, Vol.39, No.2, pp. 561-567 April, 2009.
- [24] K. Tanaka, H. Yoshida, H. Ohtake, and H. O. Wang, “A Sum of Squares Approach to Stability Analysis of Polynomial Fuzzy Systems,” 2007 American Control Conf., pp. 4071-4076, July 2007.
- [25] K. Tanaka, H. Ohtake, and H. O. Wang, “A Sum of Squares Approach to Modeling and Control of Nonlinear Dynamical Systems with Polynomial Fuzzy Systems,” IEEE Trans. on Fuzzy Systems, Vol.17, No.4, pp. 911-922, August 2009.
- [26] K. Tanaka, H. Ohtake, and H. O.Wang, “An SOS-based Stable Control of Polynomial Discrete Fuzzy Systems,” 2008 American Control Conf., pp. 4875-4880, June 2008.
- [27] K. Tanaka, H. Ohtake, T. Seo, M. Tanaka, and H. O.Wang, “Polynomial Fuzzy Observer Designs: A Sum of Squares Approach,” IEEE Trans. on Systems, Man, and Cybernetics, Part B, Vol.42, No.5, pp. 1330-1342, Oct. 2012.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.