Paper:
A Bio-Inspired Adaptive Perching Mechanism for Unmanned Aerial Vehicles
Wanchao Chi*, Kin Huat Low*, Kay Hiang Hoon*,
Johnson Tang**, and Tiauw Hiong Go*
*School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
**Defence Science Organization, Singapore
- [1] R. Dudley, “The Biomechanics of Insect Flight,” Princeton University Press, Princeton, NJ, 2000.
- [2] M. L. Anderson, C. J. Perry, B.M. Hua et al., “The Sticky-Pad Plane and other Innovative Concepts for Perching UAVs,” 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, January 2009, Orlando, USA, 2009.
- [3] M. Kovač, J. Germann, C. Hüurzeler, R. Y. Siegwart, and D. Floreano, “A Perching Mechanism for Micro Aerial Vehicles,” J. of Micro-Nano Mechatronics, Vol.5, No.3, p. 77, 2010.
- [4] A. L. Desbiens and M. R. Cutkosky, “Landing and Perching on Vertical Surfaces with Microspines for Small Unmanned Air Vehicles,” J. of Intelligent Robot System, Vol.57, pp. 313-327, 2010.
- [5] A. L. Desbiens, A. Asbeck, S. Dastoor, and M. Cutkosky, “Hybrid Aerial and Scansorial Robotics,” 2010 IEEE Int. Conf. on Robotics and Automation, pp. 1114-1115, 2010.
- [6] C. E. Doyle, J. J. Bird, T. A. Isom et al., “Avian-Inspired Passive Perching Mechanism for Robotic Rotorcraft,” 2011 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, September 2011, San Francisco, USA, 2011.
- [7] P. M. Galton and J. D. Shepherd, “Experimental analysis of perching in the European starling (Sturnus vulgaris: Passeriformes; passeres), and the automatic perching mechanism of birds,” J. of Experimental Zoology, Vol.317, pp. 205-215, 2012.
- [8] T. H. Quinn and J. J. Baumel, “The digital tendon locking mechanism of the avian foot (Aves),” Zoomorphology, Vol.109, pp. 281-293, 1990.
- [9] T. H. Quinn and J. J. Baumel, “Chiropteran Tendon Locking Mechanism,” J. of Morphology, Vol.216, pp. 197-208, 1993.
- [10] N. S. Proctor and P. J. Lynch, “Manual of Ornithology: Avian Structure and Function,” Yale University Press, New Haven, 1993.
- [11] K. Nagata, F. Saito, and T. Suehiro, “Development of the Master Hand for Grasping Information Capturing,” J. of Robotics and Mechatronics, Vol.20, No.1, pp. 18-23, 2008.
- [12] S. Ueki, H. Kawasaki, and T.Mouri, “Adaptive Coordinated Control of Multi-Fingered Robot Hand,” J. of Robotics and Mechatronics, Vol.21, No.1, pp. 36-43, 2009.
- [13] T. Tsuji, K. Harada, K. Kaneko, F. Kanehiro, and K. Maruyama, “Grasp Planning for a Multifingered Hand with a Humanoid Robot,” J. of Robotics and Mechatronics, Vol.22, No.2, pp. 230-238, 2010.
- [14] R. A. Norberg, “Why foraging birds in trees should climb and hop upwards rather than downwards,” Ibis, Vol.123, pp. 281-288, 1981.
- [15] A. V. Pike and D. P. Maitland, “Scaling of bird claws,” J. Zool., Vol.262, pp. 73-81, 2004.
- [16] D. W. Fowler, E. A. Freedman, and J. B. Scannella, “Predatory Functional Morphology in Raptors: Interdigital Variation in Talon Size Is Related to Prey Restraint and Immobilisation Technique,” Plosone, Vol.4, No.11, pp. 1-9, 2009.
- [17] F. Inoue, “A Study on Adaptive Arch Structure Applying Variable Geometry Truss (Mechanism of Movable Arch Roof with External Panel),” J. of Robotics and Mechatronics, Vol.21, No.2, pp. 172-178, 2009.
- [18]
Supporting Online Materials: - [19] [a] “E. Britannica,” Bird, [Online], 2011.
Available: http://www.britannica.com/EBchecked/topic/66391/bird - [20] [b] “Unique Views of Nature,” Barn owl in slow motion, [Online], 2012.
Available: http://www.uniqueviewsofnature.com
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2012 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.