Paper:
Path Tracking Method for Traveling-Wave-Type Omnidirectional Mobile Robot (TORoIII)
Teruyoshi Ogawa and Taro Nakamura
Faculty of Science and Engineering, Department of Precision Mechanics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
- [1] J. Urbano, K. Terashima , T. Miyoshi, and H. Kitagawa, “Velocity Control of an Omni-directional Wheelchair Considering Use’s Comfort by Suppressing Vibration,” IEEE/RSJ 2005 Int. Conf. on Intelligent Robots and Systems, pp. 3169-3174, 2005.
- [2] B. Chan, N. J. Balmforth, and A. E. Hosoi, “Building a better snail: Lubrication and adhesive locomotion,” Physics of Fluids, Vol.17, Issue 11, pp. 113101 1-10, 2005.
- [3] R. Fujiwara, H. Morikawa, and S. Kobayashi, “The Mechanism of Pedal Locomotion of Gastropod,” The Japan Society of Mechanical Engineers, Vol.67, No.658, pp. 1934-1940, 2001.
- [4] H. D. Jones, “Circulatory pressures in Helix pomatia,” L. Comp. Biochem. Physiol., Vol.39A, p. 289, 1971.
- [5] R. Fujiwara, H. Morikawa, Y. Hukuya, H. Sakai, and S. Kobayashi, “Pedal-Like Locomotion Mechanism Modeled on Pedal Crawling of Terrestrial Gastropod,” The Japan Society of Mechanical Engineers, Vol.70, No.695, pp. 215-221, 2004.
- [6] T. Nakamura and K. Sato, “Locomotion Strategy for an Omnidirectional Mobile Robot Using Traveling Waves Propagation,” IEEE Int. Conf. on Robotics and Automation, pp. 3769-3774, 2010.
- [7] T. Nakamura and K. Sato, “Development of an omni-directional mobile robot using traveling waves based on snail locomotion,” J. of Industrial Robot, Vol.35, No.3, pp. 206-210, 2008.
- [8] K. Satoh and T. Nakamura, “Development of an omni-directional mobile robot based on snail locomotion,” Proc. of 7th Int. Conf. on Climbing and Walking Robots and the Support Technologies for Mobile Machines, pp. 144-152, 2007.
- [9] R. B. Tilove, “Local Obstacle Avoidance for Mobile Robots Based on theMethod of Artificial Potentials,” IEEE Int. Conf. on Robotics and Automation, pp. 566-571, 1990.
- [10] N. Nejatbakhsh and K. Kosuge “User-Environment Based Navigation Algorithm for an Omnidirectional Passive Walking Aid System,” IEEE Int. Conf. on Rehabilitation Robotics, pp. 178-181, 2005.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2012 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.