Paper:
Biped Landing Pattern Modification Method and Walking Experiments in Outdoor Environment
Kenji Hashimoto*, Yusuke Sugahara**, Hun-Ok Lim***,*****,
and Atsuo Takanishi****,*****
*Graduate School of Science and Engineering, Waseda University, 3-4-1 Ookubo, Shinjuku-ku, Tokyo 169-8555, Japan
**Department of Bioengineering and Robotics, Tohoku University, 6-6-01, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
***Department of Mechanical Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan
****Department of Modern Mechanical Engineering, Waseda University, 3-4-1 Ookubo, Shinjuku-ku, Tokyo 169-8555, Japan
*****Humanoid Robotics Institute (HRI), Waseda University, 17-41-2-04A Kikui-cho, Shinjuku-ku, Tokyo 162-0044, Japan
- [1] Y. Sugahara, et al., “Control and Experiments of a Multi-purpose Bipedal Locomotor with Parallel Mechanism,” Proc. of the IEEE ICRA 2003, pp. 4342-4347, Taipei, Taiwan, September, 2003.
- [2] Y. Sugahara, et al., “Realization of Dynamic Human-Carrying Walking by a Biped Locomotor,” Proc. of the IEEE ICRA 2004, pp. 3055-3060, New Orleans, USA, April, 2004.
- [3] K. Takita, et al., “Fundamental mechanism of dinosaur-like robot TITRUS-II utilizing coupled drive,” Proc. of the IEEE/RSJ IROS 2000, pp. 1670-1675, Takamatsu, Japan, October, 2000.
- [4] Y. Ota, T. Tamaki, K. Yoneda, and S. Hirose, “Development of walking manipulator with versatile locomotion,” Proc. of the IEEE ICRA 2003, pp. 477-483, Taipei, Taiwan, September, 2003.
- [5] Y. Konuma and S. Hirose, “Development of 2 types of leg-wheel vehicle with the function of stable stair-climbing,” Proc. of the 8th RSJ/JSME/SICE Robotics Symposia, pp. 160-167, Shizuoka, Japan, March, 2003 (in Japanese).
- [6] Y. Takeda, M. Higuchi, and H. Funabashi, “Development of a walking chair (Fundamental investigations for realizing a practical walking chair),” Proc. of the CLAWAR2001, pp. 1037-1044, Karlsruhe, Germany, September, 2001.
- [7] T. Kamada, “My Agent: A Practical Personal Assistant,” Proc. of the JSME ROBOMEC ’94, pp. 1107-1112, Kobe, Japan, 1994 (in Japanese).
- [8] Toyota Motor Corporation Webpage,
http://www.toyota.co.jp/en/tech/robot/p_robot/index.html, 2008. - [9] J.-Y. Kim, J. Lee, and J.-H. Oh, “Experimental Realization of Dynamic Walking for a Human-Riding Biped Robot, HUBO FX-1,” Advanced Robotics, Vol.21, No.3-4, pp. 461-484, 2007.
- [10] Independence Technology, L.L.C.Webpage,
http://www.independencenow.com/ibot/index.html, 2008. - [11] K. Nagasaka, M. Inaba, and H. Inoue, “Stabilization of Dynamic Walk on a Humanoid Using Torso Position Compliance Control,” Proc. of 17th Annual Conf. on Robotics Society of Japan, pp. 1193-1194, 1999.
- [12] J. H. Park and H. C. Cho, “An On-line Trajectory Modifier for the Base Link of Biped Robots to Enhance Locomotion Stability,” Proc. of the IEEE ICRA2000, pp. 3353-3358, San Francisco, USA, April, 2000.
- [13] R. Yoshino, “Stabilizing Control of High-Speed Walking Robot by Walking Pattren Regulator,” In Journal of the Robotics Society of Japan, Vol.18, No.8, pp.1122-1132, 2000.
- [14] Y. Sugahara, et al., “Waling Control Method of Biped Locomotors on Inclined Plane,” Proc. of the IEEE ICRA2005, pp. 1989-1994, Barcelona, Spain, April, 2005.
- [15] S. Kajita and K. Tani, “Adaptive gait control of a biped robot based on realtime sensing of the ground,” Proc. of the IEEE ICRA 1996, pp. 570-577, Minneapolis, USA, April, 1996.
- [16] J. Yamaguchi, A. Takanishi, and I. Kato, “Experimental Development of a Foot Mechanism with Shock Absorbing Material for Acquisition of Landing Surface Position Information and Stabilization of Dynamic Biped Walking,” Proc. of the IEEE ICRA 1995, pp. 2892-2899, Nagoya, Aichi, Japan, May, 1995.
- [17] M. Vukobratovic and J. Stepanenko, “On the Stability of Anthropomorphic Systems,” Mathematical Biosciences, Vol.15, No.1, pp. 1-37, 1972.
- [18] K. Hashimoto, et al., “Development of New Foot System Adaptable to Uneven Terrain for All Biped Robots,” Proc. of the 17th CISM-IFToMM Symposium on Robot Design, Dynamics and Control (ROMANSY2008), pp. 391-398, Tokyo, Japan, July, 2008.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2008 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.