Paper:
Adaptive Modeling of Physical Systems Based on Affine Transform and its Application for Machine Learning
Shingo Nakamura and Shuji Hashimoto
Department of Applied Physics, Waseda University, Tokyo, Japan
- [1] K. Doya, “Efficient Nonlinear Control with Actor-Tutor Architecture,” Advances in Neural Information Processing System 9, pp. 1012-1018, 1996.
- [2] K. Iguchi, H. Kimura, and S. Kobayashi, “GA-based Control for Swinging up and Stabilizing Parallel Double Inverted Pendulums,” Proc. of the 13th SICE Symposium on Decentralized Autonomous Systems, pp. 277-282, 2001.
- [3] K. Doya, K. Samejima, K. Katagiri, and M. Kawato, “Multiple model-based reinforcement learning,” Neural Comput., Vol.14, No.6, pp. 1347-1369, 2002.
- [4] Y. Xu, M. Iwase, and K. Furuta, “Time Optimal Swing-up Control of Single Pendulum,” Trans. of ASME, Journal of Dynamics Systems, Measurement and Control, Vol.123, No.5, pp. 518-527, 2001.
- [5] K. Yoshida, “Swing-up control of an inverted pendulum by energybased methods,” Proc. of the American Control Conf., pp. 4045-4047, 1999.
- [6] K. J. Astrom and K. Furuta, “Swing-up a pendulum by a energy control,” Automatica, Vol.36, pp. 287-295, 2000.
- [7] M. Bugeja, “Non-linear swing-up and stabilizing control of an inverted pendulum system,” Proc. IEEE Region 8 EUROCON 2003, 2003.
- [8] J. C. Bongard and H. Lipson, “Automated Damage Diagnosis and Recovery for Remote Robotics,” Proc. of the 2004 Int. Conf. on Robotics and Automation, pp. 3545-3550, 2004.
- [9] H. Kimura, T. Yamashita, and S. Kobayashi, “Reinforcement learning of walking behavior for a four-legged robot,” Proc. of the 40th IEEE Conf. on Decision and Control, pp. 411-416, 2001.
- [10] H. Kimura and S. Kobayashi, “Reinforcement Learning for Crawling Robot Motion Using Stochastic Gradient Ascent,” Journal of Japanese Society for Artificial Intelligence, Vol.14, No.1, pp. 122-130, 1999.
- [11] S. Nakamura, R. Saegusa, and S. Hashimoto, “Hybrid Learning Strategy for Real Hardware of Swing-up Pendulum,” JACIII, Vol.11, No.8, pp. 972-978, 2007.
- [12] M. F. Speider, S. Nakamura, and S. Hashimoto, “Crossing the reality gap for a swing-up pendulum,” Proc. of the 2006 IEICE General Conf., CD-Proc, D-2-12, 2006.
- [13] R. S. Sutton and A. G. Barto, “Reinforcement Learning: An Introduction,” A Bradford Book, The MIT Press, 1988.
- [14] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive elements that can solve difficult learning control problems,” IEEE Trans. Syst.Man. & Cybern, Vol.SMC-13, pp. 835-846, 1983.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2008 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.