Paper:
Development of a Power Assist System of a Walking Chair (Proposition of the Speed-Torque Combination Power Assist System)
Yunfeng Wu, Masaru Higuchi, Yukio Takeda,
and Koichi Sugimoto
Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
- [1] H. Funabashi, Y. Takeda, I. Kawabuchi, and M. Higuchi, “Development of a walking chair with a self-attitude-adjusting mechanism for stable walking on uneven terrain,” Proc. Tenth World Congress on the Theory of Machines and Mechanisms, Oulu, Finland, June 20-24, 1999, pp. 1164-1169.
- [2] Y. Takeda, M. Higuchi, H. Funabashi, Y. Oki, and K. Shimizu, “Development of a walking chair (Fundamental investigations for realizing a practical walking chair),” Proc. 4th Int. Conf. on Climbing and Walking Robots (CLAWAR2001), Karlsruhe, Germany, September 24-26, 2001, pp. 1037-1044.
- [3] Y. Sugahara, M. Kawase, Y. Mikuriya, T. Hosobata, H. Sunazuka, K. Hashimoto, H. Lim, and A. Takanishi, “Support torque reduction mechanism for biped locomotor with parallel mechanism,” Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3123-3218.
- [4] http://www.toyota.co.jp/en/special/robot/index.html ,
March 11th, 2004. - [5] “Assist bicycle,” Nikkei mechanical, November 29, 1993, pp. 90-93.
- [6] H.-K. Lee, T. Takubo, H. Arai, and K. Tanie, “Control of Mobile Manipulators for Power Assist Systems,” Proc. 1999 IEEE International Conference on Systems, Man, and Cybernetics (SMC’99), IV, 1999, pp. 989-994.
- [7] H. Arai, T. Takubo, Y. Hayashibara, and K. Tanie, “Human-Robot Cooperative Manipulation Using a Virtual Nonholonomic Constraint,” Proceedings – IEEE International Conference on Robotics and Automation, v4, 2000, pp. 4063-4069.
- [8] Y. Hayashibara, K. Tanie, H. Arai, and H. Tokashiki, “Development of Power Assist System with Individual Compensation Ratios for Gravity and Dynamic Load,” Proc. 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’97), 1997, pp. 640-646.
- [9] H. Kazarooni, “Human Extender,” Trans. of ASME, J. Dynamic Systems, Measurement and Control, Vol.115, pp. 281-290, 1993.
- [10] K. Kosuge, Y. Fujisawa, and T. Fukuda, “Control of man-machine system based on virtual tool dynamics,” Trans. of the Japan Society of Mechanical Engineers, Vol.60, No.572, pp. 1337-1343, 1994 (in Japanese).
- [11] M. Higuchi, Y. Takeda, H. Funabashi, T. Yamada, and T. Matsumoto, “Development of a power assisting system of a walking chair,” Transactions of the Japan Society of Mechanical Engineers, Vol.69, No.683, pp. 1885-1891, 2003 (in Japanese).
- [12] M. Higuchi, Y. Wu, and Y. Takeda, “Study of a power assisting system of a walking chair (Comparison of types of mechanisms for power combination),” The 3rd JSME Symposium on Welfare Engineering, No.03-28, pp. 165-168, 2003 (in Japanese).
- [13] D. Surdilovic, R. Berdnhardt, and L. Zhang, “New intelligent power assist systems based on differential transmission,” Robotica, Vol.21, pp. 295-302, 2003.
- [14] L. W. Tsai, G. Schhultz, and N. Higuchi, “A Novel Parallel Hybrid Transmission,” Transaction of the ASME: Journal of Mechanical Design, Vol.123, pp. 161-168, June 2001.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2005 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.