JDR Vol.17 No.1 pp. 61-64
doi: 10.20965/jdr.2022.p0061


Population Density and Regional Differences Determine the Probability of COVID-19 Infection

Hideaki Karaki

Foundation of Food Safety and Security
Central Building, 1-23-6 Hamamatsu-cho, Minato-ku, Tokyo 105-0013, Japan

Corresponding author

November 14, 2021
December 14, 2021
January 30, 2022
COVID-19, probability of infection, regional differences, population density

With the passage of almost two years since the outbreak of COVID-19, the characteristics of the infection have become clearer. It is now known that the peaks of infections recur approximately every four months, the probability of infection varies greatly by region, and the probability of infection correlates with population density.

Cite this article as:
H. Karaki, “Population Density and Regional Differences Determine the Probability of COVID-19 Infection,” J. Disaster Res., Vol.17 No.1, pp. 61-64, 2022.
Data files:
  1. [1] L. E. Escobar, A. Molina-Cruz, and C. Barillas-Mury, “BCG vaccine protection from severe coronavirus disease 2019 (COVID-19),” PNAS, Vol.117, No.30, pp. 17720-17726, doi: 10.1073/pnas.2008410117, 2020.
  2. [2] J. Hauer, U. Fischer, F. Auer, and A. Borkhardt, “Regional BCG vaccination policy in former East- and West Germany may impact on both severity of SARS-CoV-2 and incidence of childhood leukemia,” Leukemia, Vol.34, pp. 2217-2219, doi: 10.1038/s41375-020-0871-4, 2020.
  3. [3] A. Miller, M. J. Reandelar, K. Fasciglione, V. Roumenova, Y. Li, and G. H. Otazu, “Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19,” Version 1, medRxiv preprint, doi: 10.1101/2020.03.24.20042937, March 28, 2020.
  4. [4] H. Zeberg and S. Pääbo, “The major genetic risk factor for severe COVID-19 is inherited from Neanderthals,” Nature, No.587, pp. 610-612, doi: 10.1038/s41586-020-2818-3, 2020.
  5. [5] H. Zeberg and S. Pääbo, “A genomic region associated with protection against severe COVID-19 is inherited from Neandertals,” PNAS, Vol.118, No.9, e2026309118, doi: 10.1073/pnas.2026309118, 2021.
  6. [6] K. Shimiz, T. Iyoda, A. Sanpe, H. Nakazat, M. Okada, S. Ued, M. Kato-Murayama, K. Murayam, M. Shirouz, N. Harad, M. Hidak, and S. Fujii, “Identification of TCR repertoires in functionally competent cytotoxic T cells cross-reactive to SARS-CoV-2,” Commu. Bio., Vol.4, Article No.1365, doi: 10.1038/s42003-021-02885-6, 2021.
  7. [7] T. Greenhalgh, J. L. Jimenez, K. A. Prather, Z. Tufekci, D. Fisman, and R. Schooley, “Ten scientific reasons in support of airborne transmission of SARS-CoV-2,” Lancet, Vol.397, No.10285, pp. 1603-1605, doi: 10.1016/S0140-6736(21)00869-2, 2021.
  8. [8] C. M. Escobedo-Bonilla, “Mini Review: Virus Interference: History, Types and Occurrence in Crustaceans,” Front. Immunol., doi: 10.3389/fimmu.2021.674216, 2021.
  9. [9] S. Y. Tartof, J. M. Slezak, H. Fischer, V. Vennis Hong, B. K. Ackerson, O. N. Ranasinghe, T. B. Frankland, O. A. Ogun, J. M. Zamparo, S. Gray, S. R. Valluri, K. Pan, F. J. Angulo, L. Jodar, and J. M. McLaughlin, “Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study,” Lancet, Vol.398, No.10309, pp. 1407-1416, doi: 10.1016/S0140-6736(21)02183-8, 2021.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jun. 03, 2024