single-dr.php

JDR Vol.16 No.4 pp. 765-777
(2021)
doi: 10.20965/jdr.2021.p0765

Paper:

Designing an Indonesian Disaster Management Information System with Local Characteristics: A Case Study of Mount Merapi

Amelia Santoso, Joniarto Parung, Dina Natalia Prayogo, and Ameilia Lolita

Department of Industrial Engineering, University of Surabaya
Raya Kalirungkut, Surabaya 60293, Indonesia

Corresponding author

Received:
August 5, 2020
Accepted:
March 24, 2021
Published:
June 1, 2021
Keywords:
disaster management, information system, volcanic eruption
Abstract

Effective preparation can help minimize the number of victims and the amount of damage caused by volcanic eruptions, as well as facilitate the recovery of victims’ livelihoods after such disasters. Hence, it is crucial to coordinate and integrate all stakeholders in a management information system in which each stakeholder is interrelated but has different roles and functions. This paper presents the design of a disaster management information system (DMIS) with consideration for the volcano’s location and characteristics. This includes identifying disaster management stakeholders and their respective roles and the volcano’s location and characteristics combined with accessible databases. To validate the design, the results of the DMIS calculations of the needs of refugees from the eruption of Mount Merapi in November 2020 in Kalitengah Lor, Glagaharjo Village, Sleman were compared with the number of real items distributed by the government and donors. The results of this comparison showed that the needs of refugees were fulfilled at a percentage ranging from 66–99%.

Cite this article as:
A. Santoso, J. Parung, D. Prayogo, and A. Lolita, “Designing an Indonesian Disaster Management Information System with Local Characteristics: A Case Study of Mount Merapi,” J. Disaster Res., Vol.16 No.4, pp. 765-777, 2021.
Data files:
References
  1. [1] J. Ryoo and Y. B. Choi, “A comparison and classification framework for disaster information management systems,” Int. J. Emerg. Manag., Vol.3, No.4, pp. 264-279, doi: 10.1504/IJEM.2006.011296, 2006.
  2. [2] N. Pidgeon and M. O’Leary, “Man-made disasters: why technology and organizations (sometimes) fail,” Saf. Sci., Vol.34, Nos.1-3, pp. 15-30, 2000.
  3. [3] S. Celik and S. Corbacioglu “Role of information in collective action in dynamic disaster environments,” Disasters, Vol.34, No.1, pp. 137-154, 2010.
  4. [4] A. Sinha, P. Kumar, N. P. Rana, R. Islam, and Y. K. Dwivedi, “Impact of internet of things (IoT) in disaster management: a task-technology fit perspective,” Ann. Oper. Res, Vol.283, Nos.1-2, pp. 759-794, doi: 10.1007/s10479-017-2658-1, 2019.
  5. [5] C. Newhall and R. Hoblitt, “Constructing event trees for volcanic crises,” Bull. Volcanol., Vol.64, No.1, pp. 3-20, doi: 10.1007/s004450100173, 2002.
  6. [6] A. Neri et al., “Developing an Event Tree for probabilistic hazard and risk assessment at Vesuvius,” J. Volcanol. Geotherm. Res., Vol.178, No.3, pp. 397-415, doi: 10.1016/j.jvolgeores.2008.05.014, 2008.
  7. [7] S. Nakada et al., “Eruption scenarios of active volcanoes in Indonesia,” J. Disaster Res., Vol.14, No.1, pp. 40-50, doi: 10.20965/JDR.2019.P0040, 2019.
  8. [8] A. Garcia-Aristizabal, J. Selva, and E. Fujita, “Integration of stochastic models for long-term eruption forecasting into a Bayesian event tree scheme: a basis method to estimate the probability of volcanic unrest,” Bull. Volcanol., Vol.75, Article No.689, pp. 1-13, doi: 10.1007/s00445-013-0689-2, 2013.
  9. [9] M. M. Rafi, T. Aziz, and S. Lodi, “A comparative study of disaster management information systems,” Online Inf. Rev., Vol.42, No.6, pp. 971-988, doi: 10.1108/OIR-06-2016-0168, 2018.
  10. [10] N. Altay and W. G. Green III, “OR/MS Research in Disaster Operations Management,” Eur. J. Oper. Res, Vol.175, No.1, pp. 475-493, doi: 10.1016/j.ejor.2005.05.016, 2006.
  11. [11] M. Yu, C. Yang, and Y. Li, “Big Data in Natural Disaster Management: A Review,” Geosciences, Vol.8, No.5, pp. 1-26, doi: 10.3390/geosciences8050165, 2018.
  12. [12] N. D. Baker and L. G. Ludwig, “Disaster preparedness as social control,” Crit. Policy Studies, Vol.12, No.1, pp. 24-43, doi: 10.1080/19460171.2016.1214075, 2018.
  13. [13] D. Long, “Logistics for disaster relief: Engineering on the run,” IIE Solut., Vol.29, No.6, pp. 26-30, 1997.
  14. [14] Y. Usuda, T. Matsui, H. Deguchi, T. Hori, and S. Suzuki, “The shared information platform for disaster management – the research and development regarding technologies for utilization of disaster information –,” J. Disaster Res., Vol.14, No.2, pp. 279-291, doi: 10.20965/jdr.2019.p0279, 2019.
  15. [15] H. Taubenböck et al, “‘Last-Mile’ preparation for a potential disaster – Interdisciplinary approach towards tsunami early warning and an evacuation information system for the coastal city of Padang, Indonesia,” Nat. Hazards Earth Syst. Sci., Vol.9, No.4, pp. 1509-1528, doi: 10.5194/nhess-9-1509-2009, 2009.
  16. [16] A. Santoso, R. A. P. Sutanto, D. N. Prayogo, and J. Parung, “Development of fuzzy RUASP model – Grasp metaheuristics with time window: Case study of Mount Semeru eruption in East Java,” IOP Conf. Ser. Earth Environ. Sci., Vol.235, No.1, doi: 10.1088/1755-1315/235/1/012081, 2019.
  17. [17] M. Turoff, M. J. Chumer, and B. Van de Walle, “The Design of a Dynamic Emergency Response Management Information System (DERMIS),” J. Inf. Technol. Theory Appl., Vol.5, No.4, pp. 1-36, 2004.
  18. [18] L. Mork, “Techno Tools for Crisis Response,” Risk Manag., Vol.49, No.10, p. 44, 2002.
  19. [19] E. J. Sommerfeldt, “Disasters and Information Source Repertoires: Information Seeking and Information Sufficiency in Postearthquake Haiti,” J. Appl. Commun. Res., Vol.43, No.1, pp. 1-22, 2015.
  20. [20] D. Murthy and A. J. Gross, “Social media processes in disasters: Implications of emergent technology use,” Soc. Sci. Res. Soc., Vol.63, pp. 356-370, doi: 10.1016/j.ssresearch.2016.09.015, 2016.
  21. [21] K. Eismann, O. Posegga, and K. Fischbach, “Collective Behaviour, Social Media, and Disasters: A Systematic Literature Review,” Proc. of the 24th European Conf. on Information Systems (ECIS), 2016.
  22. [22] F. Liu and D. Xu, “Social Roles and Consequences in Using Social Media in Disasters: a Structurational Perspective,” Inf. Syst. Front., Vol.20, No.4, pp. 693-711, doi: 10.1007/s10796-017-9787-6, 2017.
  23. [23] G. Kovács and K. M. Spens, “Humanitarian logistics in disaster relief operations,” Int. J. Phys. Distrib. Logist. Manag., Vol.37, No.2, pp. 99-114, doi: 10.1108/09600030710734820, 2007.
  24. [24] R. Read, B. Taithe, and R. Mac Ginty, “Data hubris? Humanitarian information systems and the mirage of technology,” Third World Q, Vol.37, No.8, pp. 1314-1331, doi: 10.1080/01436597.2015.1136208, 2016.
  25. [25] H. Seppänen and K. Virrantaus, “Shared situational awareness and information quality in disaster management,” Saf. Sci, Vol.77, pp. 112-122, doi: 10.1016/j.ssci.2015.03.018, 2015.
  26. [26] D. Sarma, A. Das, and U. K. Bera, “An optimal redistribution plan considering aftermath disruption in disaster management,” Soft Comput, Vol.24, pp. 65-82, doi: 10.1007/s00500-019-04287-7, 2020.
  27. [27] K. Y. Sokat, I. S. Dolinskaya, K. Smilowitz, and R. Bank, “Incomplete information imputation in limited data environments with application to disaster response,” Eur. J. Oper. Res, Vol.269, No.2, pp. 466-485, doi: 10.1016/j.ejor.2018.02.016, 2018.
  28. [28] P. Salmon, N. Stanton, D. Jenkins, and G. Walker, “Coordination during multi-agency emergency response: issues and solutions,” Disaster Prev. Manag., Vol.20, No.2, pp. 140-158, doi: 10.1108/09653561111126085, 2011.
  29. [29] J. Steenbruggen, E. Tranos, and P. Nijkamp, “Data from mobile phone operators: A tool for smarter cities?,” Telecomm. Policy, Vol.39, Nos.3-4, pp. 335-346, doi: 10.1016/j.telpol.2014.04.001, 2015.
  30. [30] M. Hanashima, R. Sato, and Y. Usuda, “The Standardized Disaster-Information Products for Disaster Management: Concept and Formulation,” J. Disaster Res., Vol.12, No.5, pp. 1015-1027, doi: 10.20965/jdr.2017.p1015, 2017.
  31. [31] D. I. Inan, G. Beydoun, and B. Pradhan, “Developing a Decision Support System for Disaster Management: Case Study of an Indonesia Volcano Eruption,” Int. J. Disaster Risk Reduct., Vol.31, pp. 711-721, doi: 10.1016/j.ijdrr.2018.07.020, 2018.
  32. [32] R. McLeod and G. Schell, “Management Information Systems,” Prentice Hall, 2006.
  33. [33] I. N. B. for D. Managemen, “Pedoman Penyusunan Rencana Kontigensi Antar Lembaga Menghadapi Ancaman Bencana,” 2013 (in Indonesian).

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 18, 2024