JDR Vol.14 No.5 pp. 687-700
doi: 10.20965/jdr.2019.p0687


Tracing Volcanic Activity Chronology from a Multiparameter Dataset at Shinmoedake Volcano (Kirishima), Japan

Taishi Yamada*,†, Hideki Ueda*, Toshiya Mori**, and Toshikazu Tanada*

*National Research Institute for Earth Science and Disaster Resilience (NIED)
3-1 Tennodai, Tsukuba, Ibaraki 305-0006, Japan

Corresponding author

**Geochemical Research Center, Graduate School of Science, The University of Tokyo, Tokyo, Japan

January 4, 2019
July 12, 2019
August 1, 2019
volcanic eruption, database, eruption chronology, Shinmoedake, Kirishima

Routine volcano monitoring increasingly involves multiparameter datasets. Databases that include multi-disciplinary datasets have great potential to contribute to the evaluation of ongoing volcanic eruptions and unrest events. Here, we examine the characteristics of a multiparameter dataset from Shinmoedake volcano (Kirishima) in Japan for the period of 2010–2018 to examine how the chronology of volcanic activity can be traced. Our dataset consists of global navigation satellite system (GNSS), seismic, tilt, infrasound, sulfur dioxide (SO2) column amount, and video records. We focus mainly on the period after 2012, particularly a series of ash emissions in 2017 (hereafter the 2017 eruption), lava effusion, and Vulcanian eruptions in 2018 (hereafter the 2018 eruption). Our dataset shows that the GNSS observations successfully captured the gradual inflation of the volcano edifice, suggesting magma intrusion or pressure buildup in the magma storage region prior to the 2017 and 2018 eruptions. The number of volcanic earthquakes also gradually increased from 2016 toward the eruptions, particularly events occurring beneath Shinmoedake. Tilt data captured a precursor tilt event prior to the 2017 eruption and a magma chamber deflation during the lava effusion of the 2018 eruption. Tilt, seismic, infrasound, SO2 gas column, and video data record signals accompanying periodic degassing during the lava effusion and explosive degassing accompanying the Vulcanian eruptions, which have similar characteristics to those reported for past eruptions at Shinmoedake and other volcanoes. This similarity suggests that multidisciplinary databases will be an important reference for future evaluations of ongoing volcanic activity and unrest.

Cite this article as:
T. Yamada, H. Ueda, T. Mori, and T. Tanada, “Tracing Volcanic Activity Chronology from a Multiparameter Dataset at Shinmoedake Volcano (Kirishima), Japan,” J. Disaster Res., Vol.14 No.5, pp. 687-700, 2019.
Data files:
  1. [1] H. Aoyama and H. Nakamichi, “Eruption Process Inferred from Multi-parameter Geophysical Observations,” Bull. Volcanol. Soc. Japan, Vol.61, pp. 119-154, 2016.
  2. [2] M. P. Dalton, G. P. Waite, I. M. Watson, and P. A. Nadeau, “Multiparameter quantification of gas release during weak Strombolian eruptions at Pacaya Volcano, Guatemala,” Geophys. Res. Lett., Vol.37, L09303, 2010.
  3. [3] J. B. Johnson, J. J. Lyons, B. J. Andrew, and J. M. Lees, “Explosive dome eruptions modulated by periodic gas-driven inflation,” Geophys. Res. Lett., Vol.41, pp. 6689-6697, 2014.
  4. [4] R. Kazahaya, Y. Maeda, T. Mori, H. Shinohara, and M, Takeo, “Changes to the volcanic outgassing mechanism and very-long-period seismicity from 2007 to 2011 at Mt. Asama, Japan,” Earth Planet. Sci. Lett., Vol.418, pp. 1-10, 2015.
  5. [5] D. Fee, P. Izbekov, K. Kim, A. Yokoo, T, Lopez, F. Prata, R. Kazahaya, H. Nakamichi, and M. Iguchi, “Eruption mass estimation using infrasound waveform inversion and ash gas measurements: Evaluation at Sakurajima Volcano, Japan,” Earth Planet. Sci. Lett., Vol.480, pp. 42-52, 2017.
  6. [6] C. G. Newhall, F. Costa, A. Ratdomopurbo, D. Y. Venezky, C. Widiwijayanti, N. T. Z. Win, K. Tan, and E. Fajiculay, “WOVOdat – An online, growing library of worldwide volcanic unrest,” J. Volcanol. Geotherm. Res., Vol.345, pp. 184-199, 2017.
  7. [7] H. Ueda, T. Yamada, T, Miwa, M. Nagai, and T. Matsuzwa, “Development of a Data Sharing System for Japan Volcanological Data Network,” J. Disaster Res., Vol.14, No.4, pp. 571-579, 2019.
  8. [8] T. E. Sheldrake, R. S. J. Sparks, K. V. Cashman, G. Wadge, and W. P. Aspinall, “Similarities and differences in the historical records of lava dome-building volcanoes: Implications for understanding magmatic processes and eruption forecasting,” Earth Sci. Rev., Vol.160, pp. 240-263, 2016.
  9. [9] T. Minakami, “Fundamental research for predicting volcanic eruptions: Part 1,” Bull. Earth Res. Inst., Vol.38, pp. 497-544, 1960.
  10. [10] S. R. McNutt, “Seismic monitoring and eruption forecasting of volcanoes: a review of the state-of-the-art and case histories,” R. Scarpa and R. I. Tilling (Eds.), Monitoring and Mitigation of Volcanic Hazards, pp. 99-146, Springer-Verlag, Berlin, 1994.
  11. [11] T. Nishimura and M. Iguchi, “Volcanic Earthquakes and Tremor in Japan,” Kyoto University Press, Kyoto, 2011.
  12. [12] R. White and W. McCausland, “Volcano-tectonic earthquake: A new tool for estimating intrusive volumes and forecasting eruptions,” J. Volcanol. Geotherm. Res., Vol.309, pp. 139-155, 2016.
  13. [13] W. A. McCausland, H. Gunawan, R. A. White, N. Indrastuti, C. Patria, Y. Suparman, A. Putra, H. Triastuty, and M. Hendrasto, “Using a process-based model of pre-eruptive seismic patterns to forecast evolving eruptive styles at Sinabung Volcano, Indonesia,” J. Volcanol. Geotherm. Res., doi: 10.1016/j.jvolgeores.2017.04.004, 2017.
  14. [14] R. A. White and W. A. McCausland, “A process-based model of pre-eruption seismicity patterns and its use for eruption forecasting at dormant stratovolcanoes,” J. Volcanol. Geotherm. Res., doi: 10.1016/j.jvolgeores.2019.03.004, 2019.
  15. [15] D. Dzurisin, “A comprehensive approach to monitoring volcano deformation as a window on the eruption cycle,” Rev. Geophys., Vol.41, Issue 1, doi: 10.1029/2001RG000107, 2003.
  16. [16] L. Feng and A. V. Newman, “Constraints on continued episodic inflation at Long Valley Caldera, based on seismic and geodetic observations,” J. Geophys. Res., Vol.114, doi: 10.1029/2008JB006240, 2009.
  17. [17] M. Iguchi, “Magma movement from the deep to shallow Sakurajima volcano revealed by geophysical observations,” Bull. Volcanol. Soc. Jpn., Vol.58, pp. 1-18, 2013.
  18. [18] S. Nagaoka and M. Okuno, “Tephrochronology and eruptive history of Kirishima volcano in southern Japan,” Quatern. Int., Vol.246, pp. 260-269, 2011.
  19. [19] R. Imura and T. Kobayashi, “Eruptions of Shinmoedake Volcano, Kirishima Volcano Group, in the Last 300 Years,” Bull. Volcanol. Soc. Jpn., Vol.36, pp. 135-148, 1991.
  20. [20] S. Nakada, M. Nagai, T. Kaneko, Y. Suzuki, and F. Maeno, “The outline of the 2011 eruption at Shinmoe-dake (Kirishima), Japan,” Earth Planets Space, Vol.65, pp. 475-488, 2013.
  21. [21] K. Kato and H. Yamasato, “The 2011 eruptive activity of Shinmoedake volcano, Kirishimayama, Kyushu, Japan – Overview of activity and Volcanic Alert Level of the Japan Meteorological Agency –,” Earth Planets Space, Vol.65, pp. 489-504, 2013.
  22. [22] M. Tsutsui, K. Tomita, and T. Kobayashi, “Fumarolic Activity since December 2003 and Volcanic Activity during the Meiji and Taisho Eras (1880–1923) of Ohachi Volcano, Kirishima Volcano Group, Southern Kyushu, Japan,” Bull. Volcanol. Soc. Jpn., Vol.50, pp. 475-489, 2005.
  23. [23] Japan Meteorological Agency, “Kirishimayama,” Paper presented at 141th meeting of Coordinating Committee for Prediction of Volcanic Eruptions, Japan Meteorological Agency, Tokyo, 2018, (in Japanese) [accessed December 18, 2018]
  24. [24] Y. Tajima, Y. Matsuo, A. Matsuoka, T. Shoji, H. Itoh, and T. Kobayashi, “Eruptive history for the last 10,000 years of Ebino-kogen area in Kirishima volcano group, southern Kyushu,” Programme and Abstracts, The Volcanological Society of Japan, p. 40, 2008.
  25. [25] T. Tanada, H. Ueda, M. Nagai, and M. Ukawa, “NIED’s V-net, the Fundamental Volcano Observation Network in Japan,” J. Disaster Res., Vol.12, No.5, pp. 926-931, 2017.
  26. [26] Japan Meteorological Agency, “Volcano observation at Kirishima Volcano,” 2018, (in Japanese) [accessed December 18, 2018]
  27. [27] T. Sagiya, “A decade of GEONET: 1994–2003 – The continuous GPS observation in Japan and its impact on earthquake studies –,” Earth Planets Space, Vol.56, pp. xxix-xli, 2004.
  28. [28] B. Galle. C. Oppenheimer, A. Geyer, A. J. S. McGonigle, M. Edmonds, and L. Horrockes, “A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes: a new tool for volcano surveillance,” J. Volcanol. Getherm. Res., Vol.119, pp. 241-254, 2002.
  29. [29] T. Mori, J. Hirabayashi, K. Kazahaya, T. Mori, M. Ohwada, M. Miyashita, H. Iino, and Y. Nakahori, “A Compact Ultraviolet Spectrometer System (COMPUSS) for Monitoring Volcanic SO, Emission: Validation and Preliminary Observation,” Bull. Volcano. Soc. Jpn., Vol.52, pp. 105-112, 2007.
  30. [30] T. Mori and K. Karto, “Sulfur dioxide emissions during the 2011 eruption of Shinmoedake volcano, Japan,” Earth Planets Space, Vol.65, pp. 573-580, 2013.
  31. [31] T. Mori, T. Hashimoto, A. Terada, M. Yoshimoto, R. Kazahaya, H. Shinohara, and R. Tanaka, “Volcanic plume measurements using a UAV for the 2014 Mt. Ontake eruption,” Earth Planets Space, Vol.68, doi: 10.1186/s40623-016-0418-0, 2016.
  32. [32] H. Ueda, T. Kozono, R. Fujita, Y. Kohno, M. Nagai, Y. Miyagi, and T. Tanada, “Crustal deformation associated with the 2011 Shinmoe-dake eruption as observed by tiltmeters and GPS,” Earth Planets Space, Vol.65, pp. 517-525, 2013.
  33. [33] Y. Miyagi, T. Ozawa, and K. Kohno, “Crustal deformation associated with the 2011 Eruption of Shinmoe-dake in Kirishima Volcano Group, Southwestern Japan, detected by DInSAR and GPS measurements,” Bull. Volcanol. Soc. Jpn., Vol.54, pp. 341-351, 2013 (in Japanese with English abstract).
  34. [34] S. Nakao, Y. Morita. H. Yakiwara, J. Oikawa, H. Ueda, H. Takahashi, Y. Ohta, T. Matsushima, and M. Iguchi, “Volume change of the magma reservoir relating to the 2011 Kirishima Shinmoe-dake eruption – Charging, discharging and recharging process inferred from GPS measurements,” Earth Planets Space, Vol.65, pp. 505-515, 2013.
  35. [35] Y. Miyagi, T. Ozawa, T. Kozono, and M. Shimada, “Long-term lava extrusion after the 2011 Shinmoe-dake eruption detected by DInSAR observations,” Geophys. Res. Lett., Vol.41, pp. 5855-5860, 2014.
  36. [36] Y. Himematsu and M. Furuya, “Fault source model for the 2016 Kumamoto earthquake sequence based on ALOS-2/PALSAR-2 pixel-offset data: evidence for dynamic slip partitioning,” Earth Plants Space, Vol.68, doi: 10.1186/s40623-016-0545-7, 2016.
  37. [37] K. Heki, S. Miyazaki, and H. Tsuji, “Silent fault slip following an interplate thrust earthquake at the Japan Trench,” Nature, Vol.386, pp. 595-598, 1997.
  38. [38] Japan Meteorological Agency, “Kirishimayama,” paper presented at 140th meeting of Coordinating Committee for Prediction of Volcanic Eruptions, Japan Meteorological Agency, Tokyo, 2018, (in Japanese) [accessed December 18, 2018]
  39. [39] Geospatial Information Authority of Japan, “Kirishimayama,” Paper presented at 141th meeting of Coordinating Committee for Prediction of Volcanic Eruptions, Japan Meteorological Agency, Tokyo, 2018, (in Japanese) [accessed December 18, 2018]
  40. [40] National Institute for Earth Science and Disaster Resilience, “Kirishimayama,” Report of Coordinating Committee for Prediction of Volcanic Eruption, No.117, Japan Meteorological Agency, Tokyo, 2015 (in Japanese).
  41. [41] T. Horikoshi, J. Takayama, K. Takeshita, K. Goko, and H. Yoshizawa, “An analysis of the geothermal structure of the Ogiri geothermal field based on the surveys and operational data of the Ogiri Power Station after its commencement,” J. Soc. Resource Geology, Vol.55, pp. 25-38, 2005.
  42. [42] M. Cardiff, D. D. Lim, J. R. Patterson, J. Akerley, P. Spielman, J. Lopeman, P. Walsh, A. Singh, W. Foxall, H. F. Wang, N. E. Lord, C. H. Thunder, D. Fratta, R. J. Mellors, N. C. Davatzes, and K. L. Feigl, “Geothermal production and reproduced seismicity: Correlation and proposed mechanism,” E. Plant Sci. Lett., Vol.482, pp. 470-477, 2018.
  43. [43] D. Juncu, Th. Ánadóttir, H. Geirsson, G. B. Gud mundsson, B. Lund, G. Gunnarsson, A. Hooper, S. Hreinsdóttir, and K. Michalczewska, “Injection-induced surface deformation and seismicity at the Hellisheidi geothermal field, Iceland,” J. Volcanol. Geotherm. Res., doi: 10.1016/j.jvolgeores.2018.03.019, 2018.
  44. [44] D. C. Agnew, “Strainmeters and Tiltmeters,” Rev. Geophys., Vol.24, pp. 579-624, 1986.
  45. [45] Y. Aoki, “Recent Progress of Volcano Deformation Studies,” Bull. Vol. Soc. Jpn., Vol.61, pp. 311-344, 2016.
  46. [46] G. D. Moro and M. Zabro, “Subsurface deformations induced by rainfall and atmospheric pressure: tilt/strain measurements in the NE-Italy seismic area,” Earth Planet. Sci. Lett., Vol.164, pp. 193-203, 1998.
  47. [47] Y. Tamura, T. Sato, M. Ooe, and M. Ishiguro, “A procedure for tidal analysis with a Bayesian information criterion,” Geophys. J. Int., Vol.104, pp. 507-516, 1991.
  48. [48] Japan Meteorological Agency, “Meteorological data archive,” 2018, (in Japanese) [accessed June 26, 2019]
  49. [49] University of Wyoming, “Sounding data of upper air data,” 2018, [accessed June 26, 2019]
  50. [50] National Institute for Earth Science and Disaster Resilience, “Kirishimayama,” Paper presented at 141th meeting of Coordinating Committee for Prediction of Volcanic Eruptions, Japan Meteorological Agency, Tokyo, 2018, (in Japanese) [accessed December 18, 2018]
  51. [51] Japan Meteorological Agency, “Eruption list of Shinmoedake volcano in 2018,” Japan Meteorological Agency, Kagoshima, 2018, (in Japanese) [accessed December 18, 2018]
  52. [52] T. Minakami, M. Hagiwara, M. Yamaguchi, E. Koyama, and K. Hirai, “The Ebino earthquake Swarm and the Seismic Activity in the Kirishima Volcanoes, in 1968-1969, Part 4: Shifts of Seismic Activity from the Kakuto Caldera to Shinmoe-dake, Naka-dake and Takatiho-mine,” Bull. Earthq. Res. Inst., Vol.48, pp. 205-233, 1970.
  53. [53] Y. Ida, M. Yamaguchi, and F. Masutani, “Recent Seismicity and Stress Field in Kirishima Volcnao,” J. Seism. Soc. Jpn., Vol.103, pp. 479-487, 1994 (in Japanese with English abstract).
  54. [54] T. Kagiyama, “Kirishima Volcanoes – Multi active volcanic group generated in a slightly tensile stress field,” J. Tokyo Geogr. Soc., Vol.103, pp. 479-487, 1994.
  55. [55] K. Aki and R. Koyanagi, “Deep Volcanic Tremor and Magma Ascent Mechanism Under Kulauea, Hawaii,” J. Geophys. Res., Vol.86, pp. 7095-7109, 1981.
  56. [56] M. Ukawa and M. Ohtake, “A monochromatic earthquake suggesting deep‐seated magmatic activity beneath the Izu‐Ooshima Volcano, Japan,” J. Geophys. Res., Vol.92, pp. 12649-12663, 1987.
  57. [57] J. A. Power, S. D. Stihle, R. A. White, and S. C. Moran, “Observations of deep long-period (DLP) seismic events beneath Aleutian arc volcanoes; 1989–2002,” J. Volcanol. Geotherm. Res., Vol.138, pp. 243-266, 2004.
  58. [58] M. Ukawa, “Deep Low-frequency earthquake swarm in the mid crust beneath Mount Fuji (Japan) in 2000 and 2001,” Bull, Volcanol., Vol.68, pp. 67-56, 2005.
  59. [59] H. Nakamichi, M. Ukawa, and S. Sakai, “Precise hypocenter locations of midcrustal low-frequency earthquakes beneath Mt. Fuji, Japan,” Earth Planets Place, Vol.56, pp. e37-e40, 2004.
  60. [60] N. Aso and V. C. Tsai, “Cooling magma model for deep volcanic long-period earthquakes,” J. Geophys. Res., Vol.119, pp. 8442-8456, 2014.
  61. [61] N. M. Shapiro, D. V. Droznin, S. Ya. Droznina, S. L. Senyukov, A. A. Gusev, and E. I. Gordeev, “Deep and shallow long-period volcanic seismicity linked by fluid-pressure transfer,” Nat. Geosci., Vol.10., pp. 442-445, 2017.
  62. [62] M. Ichihara and S. Matsumoto, “Relative Source Locations of Continuous Tremor Before and After Subplinian Events at Shinmoe-dake, in 2011,” Geophys. Res. Lett., Vol.44, 10871-10877, 2017.
  63. [63] M. Iguchi, H. Yakiwara, T. Tameguri, M. Hendrasto, and J. Hirabayashi, “Mechanism of explosive eruption revealed by geophysical observations at the Sakurajima, Suwanosejima and Semeru volcanoes,” J. Volcanol. Geotherm. Res., Vol.178, pp. 1-9, 2008.
  64. [64] T. Nishimura, M. Iguchi, R. Kawaguchi, Surono, M. Hendrasto, and U. Rosadi, “Inflation prior to Vulcanian eruptions and gas bursts detected by tilt observations at Semeru Volcano, Indonesia,” Bull. Volcanol., Vol.74, pp. 903-911, 2012.
  65. [65] H. Aoyama and H. Oshima, “Precursory tilt changes of small phreatic eruptions of Meakan-dake volcano, Hokkaido, Japan, in November 2008,” Earth Planets Space, 67:119, 2015.
  66. [66] E. Fujita, “Banded tremor at Miyakejima volcano, Japan: Implication for two-phase flow instability,” J. Geophys. Res., Vol.113, doi: 10.1029/2006JB004829, 2008.
  67. [67] S. Matsumoto, H. Shimizu, T. Matsushima, K. Uehira, Y. Yamashita, M. Nakamoto, M. Miyazaki, and H. Chikura, “Short-term spatial change in a volcanic tremor source during the 2011 Kirishima eruption,” Earth Planets Space, Vol.65, pp. 323-329, 2013.
  68. [68] H. Nakamichi, Y. Yamanaka, T. Terakawa, S. Horikawa, T. Okuda, and F. Yamazaki, “Continuous long-term array analysis of seismic records observed during the 2011 Shinmoedake eruption activity of Kirishima volcano, Southwest Japan,” Earth Planets Space, Vol.65, pp. 551-562, 2013.
  69. [69] J. Battaglia and K. Aki, “Location of seismic events and eruptive fissures on the Piton de la Fournaise volcano using seismic amplitudes,” J. Geophys. Res., Vol.108, doi: 10.1029/2002JB002193, 2003.
  70. [70] M. Ogiso and K. Yomogida, “Migration of tremor locations before the 2008 eruption of Meakandake Volcano, Hokkaido, Japan,” J. Volcanol. Geotherm. Res., Vol.217-218, pp. 8-20, 2012.
  71. [71] H. Kumagai, P. Mothes, M. Ruiz, and Y. Maeda, “An approach to source characterization of tremor signals associated with eruptions and lahars,” Earth Planets Space, Vol.67, doi: 10.1186/s40623-015-0349-1, 2015.
  72. [72] A. Kurokawa, M. Takeo, and K. Kurita, “Two types of volcanic tremor changed with eruption style during 1986 Izu-Oshima eruption,” J. Geophys. Res., Vol.121, pp. 2727-2736, 2016.
  73. [73] J. M. de Moor, A. Aiuppa, J. Pacheco, G. Avard, C. Kern, M. Liuzzo, M. Martínez, G. Giudice, and T.P. Fischer, “Short-period volcanic gas precursors to phreatic eruptions: insight from Poás Volcano, Costa Rica,” Earth Planet. Sci. Lett., Vol.442, pp. 218-227, 2016.
  74. [74] A. Terada, “Evaluation of the Heat Discharge Rates from Vent “A” at Tarumae Volcano, Japan: Note on the Plume Rise Assumption,” Geophysical Bulletin of Hokkaido University, No.67, pp. 327-335, 2004.
  75. [75] K. McKee, D. Fee, A. Yokoo, R. S. Matoza, and K. Kim, “Analysis of gas jetting and fumarole acoustics at Aso Volcano, Japan,” J. Volcanol. Geotherm. Res., Vol.340, pp. 16-29, 2017.
  76. [76] J. B. Johnson and M. Ripepe, “Volcano infrasound: A review,” J. Volcanol. Geothrm. Res., Vol.206, pp. 61-69, 2011.
  77. [77] D. Fee and R. S. Matoza, “An overview of volcano infrasound: From hawaiian to plinian, local to global,” J. Volcanol. Geotherm. Res., Vol.249, pp. 123-139, 2013.
  78. [78] M. Ichihara, M. Takeo, A. Yokoo, J. Oikawa, and T. Ohminato, “Monitoring volcanic activity using correlation patterns between infrasound and ground motion,” Geophys. Res. Lett., Vol.34, L04304, 2012.
  79. [79] R. S. Matoza and D. Fee, “Infrasonic component of volcano‐seismic eruption tremor,” Geophys. Res. Lett., Vol.41, pp. 1964-1970, 2014.
  80. [80] E. Padrón, N. M. Pérez, P. A. Hernández, H. Sumino, G. V. Melián, J. Barrancos, D. Nolasco, G. Padilla, S. Dionis, F. Rodríguez, Í. Hernández, D. Calvo, M. D. Peraza, and K. Nagao, “Diffusive helium emissions as a precursory sign of volcanic unrest,” Geology, Vol.41 pp. 539-542, 2013.
  81. [81] T. Kozono, H. Ueda, T. Shimbori, and K. Fukui, “Correlation between magma chamber deflation and eruption cloud height during the 2011 Shinmoe-dake eruptions,” Earth Planets Space, Vol.66, doi: 10.1186/s40623-014-0139-1, 2014.
  82. [82] H. Ueda, “Mechanism of the Shinmoe-dake eruptions in 2011 and 2018 inferred from crustal deformation data,” Programme and Abstracts, The Volcanological Society of Japan, 2018.
  83. [83] M. Takeo, Y. Maehara, M. Ichihara, T. Ohminato, R. Kamata, and J. Oikawa, “Ground deformation cycles in a magma-effusive stage, and sub-Plinian and Vulcanian eruptions at Kirishima volcanoes, Japan,” J. Geophys. Res., Vol.118, pp. 4758-4773, 2013.
  84. [84] A. S. P. Holland, I. M. Watson, J. C. Phillips, L. Caricchi, and M. P. Dalton, “Degassing processes during lava dome growth: Insight from Santiaguito lava dome, Guatemala,” J. Volcanol. Geotherm., Res., Vol.202. pp. 153-166, 2011.
  85. [85] T. Fujii and S. Nakada, “The 15 September 1991 pyroclastic flows at Unzen Volcano (Japan): a flow model for associated ash-cloud surges,” J. Volcanol. Geotherm. Res., Vol.89. pp. 159-172, 1999.
  86. [86] S. Nakada, A. Zaennudin, M. Yoshimoto, F. Maeno, Y. Suzuki, N. Hokanishi, H. Sasaki, M. Iguchi, T. Ohkura, H. Gunawan, and H. Triastuty, “Growth process of the lava dome/flow complex at Sinabung Volcano during 2013–2016,” J. Volcanol. Geotherm. Res., doi: 10.1016/j.jvolgeores.2017.06.012, 2017.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on May. 19, 2024