JDR Vol.13 No.7 pp. 1257-1271
doi: 10.20965/jdr.2018.p1257

Survey Report:

Dynamic Integrated Model for Disaster Management and Socioeconomic Analysis (DIM2SEA)

Erick Mas*1,†, Daniel Felsenstein*2, Luis Moya*1, A. Yair Grinberger*2,*3, Rubel Das*4, and Shunichi Koshimura*1

*1Laboratory of Remote Sensing and Geoinformatics for Disaster Management
International Research Institute of Disaster Science (IRIDeS), Tohoku University
468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan

Corresponding author

*2Department of Geography, The Hebrew University of Jerusalem, Jerusalem, Israel

*3GIScience Research Group, Institute of Geography, Heidelberg University, Heidelberg, Germany

*4Research & Development Center, Nippon Koei Co., Ltd., Tokyo, Japan

August 15, 2018
October 29, 2018
December 1, 2018
urban simulation, damage assessment, socioeconomic impact, disaster management, disaster simulation

The DIM2SEA research project aims to increase urban resilience to large-scale disasters. We are engaged in developing a prototype Dynamic Integrated Model for Disaster Management and Socioeconomic Analysis (DIM2SEA) that will give disaster officials, stakeholders, urban engineers and planners an analytic tool for mitigating some of the worst excesses of catastrophic events. This is achieved by harnessing state-of-the-art developments in damage assessment, spatial simulation modeling, and Geographic Information System (GIS). At the heart of DIM2SEA is an agent-based model combined with post-disaster damage assessment and socioeconomic impact models. The large amounts of simulated spatial and temporal data generated by the agent-based models are fused with the socioeconomic profiles of the target population to generate a multidimensional database of inherently “synthetic” big data. Progress in the following areas is reported here: (1) Synthetic population generation from census tract data into agent profiling and spatial allocation, (2) developing scenarios of building damage due to earthquakes and tsunamis, (3) building debris scattering estimation and road network disruption, (4) logistics regarding post-disaster relief distribution, (5) the labor market in post-disaster urban dynamics, and (6) household insurance behavior as a reflection of urban resilience.

Cite this article as:
E. Mas, D. Felsenstein, L. Moya, A. Grinberger, R. Das, and S. Koshimura, “Dynamic Integrated Model for Disaster Management and Socioeconomic Analysis (DIM2SEA),” J. Disaster Res., Vol.13 No.7, pp. 1257-1271, 2018.
Data files:
  1. [1] A. K. Donahue and R. V. Tuohy, “Lessons We Don’t Learn: A Study of the Lessons of Disasters, Why We Repeat Them, and How We Can Learn Them,” Homeland Security Affairs, Vol.II, No.2, pp. 1-28, 2006.
  2. [2] T. Katada and N. Kuwasawa, “Development of tsunami comprehensive scenario simulator for risk management and disaster education,” Trans. of the Japan Society of Civil Engineers (D), Vol.62, No.3, pp. 250-261, 2006.
  3. [3] S. Koshimura, “Establishing the Advanced Disaster Reduction Management System by Fusion of Real-Time Disaster Simulation and Big Data Assimilation,” J. Disaster Res., Vol.11, No.2, pp. 164-174, 2016., doi:10.20965/jdr.2016.p0164.
  4. [4] A. Y. Grinberger and D. Felsenstein, “A Tale of Two Earthquakes: Dynamic Agent-Based Simulation of Urban Resilience,” G. Lombard, E. Stern, and G. Clarke (eds.), Applied Spatial Modeling and Planning, pp. 134-154, Taylor and Francis, 2017.
  5. [5] G. P. Cimellaro, C. Renschler, A. M. Reinhorn, and L. Arendt, “PEOPLES: A Framework for Evaluating Resilience,” J. of Structural Engineering, Vol.142, No.10, pp. 04016063, 2016., doi:10.1061/(ASCE)ST.1943-541X.0001514.
  6. [6] C. S. Holling, “Resilience and Stability of Ecological Systems,” Annual Review of Ecology and Systematics, Vol.4, No.1, pp. 1-23, 1973., doi:10.1146/
  7. [7] N. Adger, “Social Capital, Collective Action, and Adaptation to Climate Change,” Economic Geography, Vol.79, No.4, pp. 387-404, 2003., doi:10.1111/j.1944-8287.2003.tb00220.x.
  8. [8] M. Bruneau, S. E. Chang, R. T. Eguchi, G. C. Lee, T. D. O’Rourke, A. M. Reinhorn, M. Shinozuka, K. Tierney, W. A. Wallace, and D. v. Winterfeldt, “A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities,” Earthquake Spectra, Vol.19, No.4, pp. 733-752, 2003., doi:10.1193/1.1623497.
  9. [9] B. H. N. Razafindrabe, G. A. Parvin, A. Surjan, Y. Takeuchi, and R. Shaw, “Climate Disaster Resilience: Focus on Coastal Urban Cities in Asia,” Asian J. of Environment and Disaster Management (AJEDM) – Focusing on Pro-active Risk Reduction in Asia, Vol.01, No.01, p. 101, 2009., doi:10.3850/S179392402009000088.
  10. [10] R. D. Kusumastuti, Viverita, Z. A. Husodo, L. Suardi, and D. N. Danarsari, “Developing a resilience index towards natural disasters in Indonesia,” Int. J. of Disaster Risk Reduction, Vol.10, No.PA, pp. 327-340, 2014., doi:10.1016/j.ijdrr.2014.10.007.
  11. [11] A. Y. Grinberger and P. Samuels, “Modeling the labor market in the aftermath of a disaster: Two perspectives,” Int. J. of Disaster Risk Reduction, Vol.31, pp. 419-434, 2018., doi:10.1016/j.ijdrr.2018.05.021.
  12. [12] O. Murao and F. Yamazaki, “Development of Fragility Curves for Buildings Based on Damage Survey Data of a Local Government After the 1995 Hyogoken-Nanbu Earthquake,” J. of Structural Construction Engineering, AIJ, Vol.527, No.Jan, pp. 189-196, 2000.
  13. [13] S. Koshimura, T. Oie, H. Yanagisawa, and F. Imamura, “Developing Fragility Functions for Tsunami Damage Estimation using Numerical Model and Post-Tsunami Data from Banda Aceh, Indonesia,” Coastal Engineering J., Vol.51, No.3, pp. 243-273, 2009., doi:10.1142/S0578563409002004.
  14. [14] E. Mas, A. Suppasri, F. Imamura, and S. Koshimura, “Agent-based Simulation of the 2011 Great East Japan Earthquake/Tsunami Evacuation: An Integrated Model of Tsunami Inundation and Evacuation,” J. of Natural Disaster Science, Vol.34, No.1, pp. 41-57, 2012., doi:10.2328/jnds.34.41.
  15. [15] R. Das and S. Hanaoka, “An agent-based model for resource allocation during relief distribution,” J. of Humanitarian Logistics and Supply Chain Management, Vol.4, No.2, pp. 265-285, 2014., doi:10.1108/JHLSCM-07-2013-0023.
  16. [16] S. Subaiya, C. Moussavi, A. Velasquez, and J. Stillman, “A rapid needs assessment of the rockaway peninsula in New York city after hurricane sandy and the relationship of socioeconomic status to recovery,” American J. of Public Health, Vol.104, No.4, pp. 632-638, 2014. doi:10.2105/AJPH.2013.301668.
  17. [17] W. E. Deming and F. F. Stephan, “On a Least Squares Adjustment of a Sampled Frequency Table When the Expected Marginal Totals are Known,” The Annals of Mathematical Statistics, Vol.11, No.4, pp. 427-444, 1940., doi:10.1214/aoms/1177731829.
  18. [18] L. Moya, E. Mas, S. Koshimura, and F. Yamazaki, “Synthetic building damage scenarios using empirical fragility functions: A case study of the 2016 Kumamoto earthquake,” Int. J. of Disaster Risk Reduction, Vol.31, No.October 2017, pp. 76-84, 2018., doi:10.1016/j.ijdrr.2018.04.016.
  19. [19] J. R. Freeman, “Earthquake Damage and Earthquake Insurance: Studies of a Rational Basis for Earthquake Insurance, Also Studies of Engineering Data for Earthquake-resisting Contruction,” McGraw-Hill, 1932.
  20. [20] S. T. Algermissen, J. Dewey, and W. Rinehart, “A study of earthquake losses in the San Francisco Bay area; data and analysis,” 1972.
  21. [21] K. Steinbrugge, F. McClure, and A. Snow, “Studies in seismicity and earthquake damage statistics,” Technical Report, prepared for the U.S. Coast and Geodetic Survey, Department of Housing and Urban Development, Washington D.C., 1969.
  22. [22] R. V. Whitman, “Damage Probability Matrices for Prototype Buildings,” Technical Report 380, National Science Foundation, 1973.
  23. [23] ATC-13, “Earthquake Damage Evaluation Data for California,” Applied Technology Council, Redwood City, 1985. [accessed XX XX, XXXX]
  24. [24] R. Reitherman, “A Review of Earthquake Damage Estimation Methods,” Earthquake Spectra, Vol.1, No.4, pp. 805-847, 1985., doi:10.1193/1.1585293.
  25. [25] Federal Emergency Management Agency (FEMA), “Assessment of State-of-the-Art Earthquake Loss Estimation Methodologies (FEMA-249),” Technical Report, 1994.
  26. [26] M. Papathoma-Köhle, “Vulnerability curves vs. vulnerability indicators: application of an indicator-based methodology for debris-flow hazards,” Natural Hazards and Earth System Sciences, Vol.16, No.8, pp. 1771-1790, 2016., doi:10.5194/nhess-16-1771-2016.
  27. [27] Federal Emergency Management Agency (FEMA), “Hazus Tsunami Model Technical Guidance,” Washington DC, Vol.1, No.November, 2017.
  28. [28] C. A. Kircher, A. A. Nassar, O. Kustu, and W. T. Holmes, “Development of Building Damage Functions for Earthquake Loss Estimation,” Earthquake Spectra, Vol.13, No.4, pp. 663-682, 1997., doi:10.1193/1.1585974.
  29. [29] C. A. Kircher, R. V. Whitman, and W. T. Holmes, “HAZUS Earthquake Loss Estimation Methods,” Natural Hazards Review, Vol.7, No.2, pp. 45-59, 2006., doi:10.1061/(ASCE)1527-6988(2006)7:2(45).
  30. [30] S. Park, J. W. v. d. Lindt, D. Cox, R. Gupta, and F. Aguiniga, “Successive Earthquake – Tsunami Analysis to Develop Collapse Fragilities,” J. of Earthquake Engineering, Vol.16, No.6, pp. 851-863, 2012., doi:10.1080/13632469.2012.685209.
  31. [31] S. Koshimura, Y. Namegaya, and H. Yanagisawa, “Tsunami Fragility – A New Measure to Identify Tsunami Damage –,” J. Disaster Res., Vol.4, No.6, pp. 479-488, 2009.
  32. [32] E. Mas, S. Koshimura, A. Suppasri, M. Matsuoka, M. Matsuyama, T. Yoshii, C. Jimenez, F. Yamazaki, and F. Imamura, “Developing Tsunami fragility curves using remote sensing and survey data of the 2010 Chilean Tsunami in Dichato,” Natural Hazards and Earth System Science, Vol.12, No.8, pp. 2689-2697, 2012., doi:10.5194/nhess-12-2689-2012.
  33. [33] A. Suppasri, S. Koshimura, M. Matsuoka, H. Gokon, and D. Kamthonkiat, “Remote Sensing: Application of remote sensing for tsunami disaster,” Y. Chemin (ed.), Remote Sensing of Planet Earth, pp. 143-168, InTech, 2012.
  34. [34] I. Charvet, J. Macabuag, and T. Rossetto, “Estimating Tsunami-Induced Building Damage through Fragility Functions: Critical Review and Research Needs,” Frontiers in Built Environment, Vol.3, No.August, 2017., doi:10.3389/fbuil.2017.00036.
  35. [35] A. Suppasri, S. Koshimura, and F. Imamura, “Developing tsunami fragility curves based on the satellite remote sensing and the numerical modeling of the 2004 Indian Ocean tsunami in Thailand,” Natural Hazards and Earth System Science, Vol.11, No.1, pp. 173-189, 2011., doi:10.5194/nhess-11-173-2011.
  36. [36] N. Valencia, A. Gardi, A. Gauraz, F. Leone, and R. Guillande, “New tsunami damage functions developed in the framework of SCHEMA project: application to European-Mediterranean coasts,” Natural Hazards and Earth System Science, Vol.11, No.10, pp. 2835-2846, 2011., doi:10.5194/nhess-11-2835-2011.
  37. [37] H. Gokon, S. Koshimura, M. Matsuoka, and Y. Namegaya, “Developing Tsunami Fragility Curves Due to the 2009 Tsunami Disaster in American Samoa,” J. of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering), Vol.67, No.2, 2011.
  38. [38] S. Reese, B. a. Bradley, J. Bind, G. Smart, W. Power, and J. Sturman, “Empirical building fragilities from observed damage in the 2009 South Pacific tsunami,” Earth-Science Reviews, Vol.107, No.1-2, pp. 156-173, 2011., doi:10.1016/j.earscirev.2011.01.009.
  39. [39] A. Suppasri, F. Imamura, and S. Koshimura, “Tsunamigenic Ratio of the Pacific Ocean earthquakes and a proposal for a Tsunami Index,” Natural Hazards and Earth System Science, Vol.12, No.1, pp. 175-185, 2012., doi:10.5194/nhess-12-175-2012.
  40. [40] A. Suppasri, S. Koshimura, K. Imai, E. Mas, H. Gokon, A. Muhari, and F. Imamura, “Damage characteristic and field survey of the 2011 great east japan tsunami in miyagi prefecture,” Coastal Engineering J., Vol.54, No.01, pp. 1250005, 2012., doi:10.1142/S0578563412500052.
  41. [41] A. Suppasri, E. Mas, S. Koshimura, K. Imai, K. Harada, and F. Imamura, “Developing tsunami fragility curves from the surveyed data of the 2011 great east japan tsunami in sendai and ishinomaki plains,” Coastal Engineering J., Vol.54, No.01, pp. 1250008, 2012., doi:10.1142/S0578563412500088.
  42. [42] D. M. Wiebe and D. T. Cox, “Application of fragility curves to estimate building damage and economic loss at a community scale: a case study of Seaside, Oregon,” Natural Hazards, Vol.71, No.3, pp. 2043-2061, 2013., doi:10.1007/s11069-013-0995-1.
  43. [43] B. Adriano, E. Mas, S. Koshimura, M. Estrada, and C. Jimenez, “Scenarios of Earthquake and Tsunami Damage Probability in Callao Region, Peru Using Tsunami Fragility Functions,” J. Disaster Res., Vol.9, No.6, pp. 968-975, 2014.
  44. [44] L. Moya, E. Mas, and S. Koshimura, “Evaluation of tsunami fragility curves for building damage level allocation,” Research Report of Tsunami Engineering, Vol.34, pp. 33-41, 2017.
  45. [45] K. Porter, R. Kennedy, and R. Bachman, “Creating fragility functions for performance-based earthquake engineering,” Earthquake Spectra, Vol.23, No.2, pp. 471-489, 2007. doi:10.1193/1.2720892.
  46. [46] J. W. Baker, “Efficient Analytical Fragility Function Fitting Using Dynamic Structural Analysis,” Earthquake Spectra, Vol.31, No.1, pp. 579-599, 2015., doi:10.1193/021113EQS025M.
  47. [47] E. Mas, S. Koshimura, F. Imamura, A. Suppasri, A. Muhari, and B. Adriano, “Recent Advances in Agent-Based Tsunami Evacuation Simulations: Case Studies in Indonesia, Thailand, Japan and Peru,” Pure and Applied Geophysics, Vol.172, No.12, pp. 3409-3424, 2015., doi:10.1007/s00024-015-1105-y.
  48. [48] R. Das, “Disaster preparedness for better response: Logistics perspectives,” Int. J. of Disaster Risk Reduction, Vol.31, No.December 2017, pp. 153-159, 2018., doi:10.1016/j.ijdrr.2018.05.005.
  49. [49] D. Felsenstein, M. Vernik, and Y. Israeli, “Household insurance expenditure as an indicator of urban resilience,” Int. J. of Disaster Risk Reduction, Vol.31, No.December 2017, pp. 102-111, 2018., doi:10.1016/j.ijdrr.2018.04.008.
  50. [50] L. Moya, E. Mas, F. Yamazaki, W. Liu, and S. Koshimura, “Debris extent assessment from lidar data,” New Technologies for Urban Safety of Mega Cities in Asia, p. 1, 2017.
  51. [51] L. Moya, E. Mas, B. Adriano, S. Koshimura, and F. Yamazaki, “Building damage mapping using change detection of ALOS-2 PALSAR-2 SAR images and strong motion data,” Int. Symp. on Remote Sensing, ISRS2017, pp. 281-284, 2017.
  52. [52] L. Moya, E. Mas, B. Adriano, S. Koshimura, F. Yamazaki, and W. Liu, “An integrated method to extract collapsed buildings from satellite imagery, hazard distribution and fragility curves,” Int. J. of Disaster Risk Reduction, , No.March, pp. 0-1, 2018., doi:10.1016/j.ijdrr.2018.03.034.
  53. [53] E. Mas, R. Das, L. Moya, B. Adriano, L. Urra, and S. Koshimura, “Integrated Modeling of Disaster Damage and Relief Demand Estimation in Urban Areas,” Proc. of the 15th Int. Conf. on Computers in Urban Planning and Urban Management (CUPUM), pp. 1-23, 2017.
  54. [54] L. Moya, L. Marval Perez, E. Mas, B. Adriano, S. Koshimura, and F. Yamazaki, “Novel Unsupervised Classification of Collapsed Buildings Using Satellite Imagery, Hazard Scenarios and Fragility Functions,” Remote Sensing, Vol.10, No.2, pp. 296, 2018., doi:10.3390/rs10020296.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jun. 03, 2024