single-dr.php

JDR Vol.13 No.3 pp. 424-432
(2018)
doi: 10.20965/jdr.2018.p0424

Paper:

GEONET as Infrastructure for Disaster Mitigation

Hiromichi Tsuji and Yuki Hatanaka

Geospatial Information Authority of Japan
1 Kitasato, Tsukuba, Ibaraki 305-0811, Japan

Corresponding author

Received:
December 26, 2017
Accepted:
April 6, 2018
Published:
June 1, 2018
Keywords:
GNSS, CORS, crustal deformation, earthquake, volcano
Abstract

The Geospatial Information Authority of Japan operates one of the largest GNSS Continuously Operating Reference Station networks in the world, GEONET, consisting of more than 1,300 GNSS-based control points in Japan. GEONET has become a social infrastructure for surveying and mapping, monitoring crustal deformation, and mitigating natural disasters. It is also used for precise positioning to guide construction and farm machines, and even for weather forecasting. Here we review its history and outlook, focusing on its application to disaster mitigation. As Japan is surrounded by four tectonic plates with interactions that lead to frequent earthquakes and volcanic activities, it must maintain such a geodetic infrastructure for monitoring crustal deformations in as near to real-time for possible disaster mitigation.

Cite this article as:
H. Tsuji and Y. Hatanaka, “GEONET as Infrastructure for Disaster Mitigation,” J. Disaster Res., Vol.13 No.3, pp. 424-432, 2018.
Data files:
References
  1. [1] H. Tsuji, Y. Hatanaka, T. Sagiya, and M. Hashimoto, “Coseismic crustal deformation from the 1994 Hokkaido-Toho-Oki Earthquake Monitored by a nationwide continuous GPS array in Japan,” Geophys. Res. Lett., Vol.22, pp. 1669-1672, 1995.
  2. [2] M. Hashimoto, T. Sagiya, H. Tsuji, Y. Hatanaka, and T. Tada, “Coseismic displacements of the 1995 Hyogo-ken Nanbu Earthquake,” J. Phys. Earth, Vol.44, pp. 255-279, 1996.
  3. [3] K. Heki, S. Miyazaki, and H. Tsuji, “Silent fault slip following an interplate thrust earthquake at the Japan Trench,” Nature, Vol.386, pp. 595-598, 1997.
  4. [4] S. Ozawa, S. Miyazaki, Y. Hatanaka, T. Imakiire, M. Kaidzu, and M. Murakami, “Characteristic silent earthquakes in the eastern part of the Boso peninsula, Central Japan,” Geophys. Res. Lett., Vol.30, No.6, doi: 10.1029/2002GL016665, 2003.
  5. [5] S. Ozawa, Y. Hatanaka, M. Kaidzu, M. Murakami, T. Imakiire, and Y. Ishigaki, “Aseismic slip and low-frequency earthquakes in the Bungo channel, southwestern Japan,” Geophys. Res. Lett., Vol.31, No.7, L07609, doi:10.1029/2003GL019381, 2004.
  6. [6] S. Ozawa, M. Murakami, M. Kaidzu, T. Tada, T. Sagiya, Y. Hatanaka, H. Yarai, and T. Nishimura, “Detection and Monitoring of Ongoing Aseismic Slip in the Tokai Region, Central Japan,” Science, Vol.298, pp. 1009-1012, 2002.
  7. [7] T. Kato, “Tectonics of the eastern Asia and the western Pacific as seen by GPS observations,” Geosciences J., Vol.7, No.1, pp. 1-8, 2003.
  8. [8] Y. Hatanaka, “Enhancement of Continuous GPS Observation Networks as Geoscientific Sensors Resolving Signal/Noise of GPS observables,” J. Geod. Soc., Vol.52, No.1, pp. 1-19, 2006 (in Japanese).
  9. [9] H. Nakagawa, B. Miyahara, C. Iwashita, T. Toyofuku, K. Kotani, M Ishimoto, H. Munekane, and Y. Hatanaka, “New Analysis Strategy of GEONET,” Procs. of Int. Symp. on GPS/GNSS 2008 in Tokyo, Toward a New Era of Positioning Technology, pp. 1087-1095, 2008.
  10. [10] Y. Shoji, “Retrieval of Water Vapor Inhomogeneity Using the Japanese Nationwide GPS Array and its Potential for Prediction of Convective Precipitation,” J. of the Meteorological Society of Japan, Vol.91, No.1, pp. 43-62, 2013.
  11. [11] H. Tsuji, K. Miyagawa, K. Yamaguchi, T. Yahagi, K. Oshima, H. Yamao, and T. Furuya, “Modernization of GEONET from GPS to GNSS,” Bulletin of the GSI, Vol.61, pp. 9-20, 2013.
  12. [12] T. Nishimura, H. Munekane, and H. Yarai, “The 2011 off the Pacific coast of Tohoku Earthquake and its aftershocks observed by GEONET,” Earth Planets Space, Vol.63, pp. 631-636, doi:10.5047/eps.2011.06.025, 2011.
  13. [13] S. Ozawa, T. Nishimura, H. Munekane, H. Suito, T. Kobayashi, M. Tobita, and T. Imakiire, “Preceding, coseismic, and postseismic slips of the 2011 Tohoku earthquake, Japan,” J. Geophys. Res., Vol.117, B07404, doi:10.1029/2011JB009120, 2012.
  14. [14] Y. Ohta, S. Miura, R. Hino, T. Kobayashi, H. Tsushima, S. Kawamoto, K. Miyagawa, T. Yahagi, K. Yamaguchi, H. Tsuji, and T. Nishimura, “Real-time crustal deformation monitoring based on RTK-GPS: Application to 2011 Tohoku earthquake and its improvement for implementation to actual GPS network,” IAG Scientific Assembly 2013, 2013.
  15. [15] S. Kawamoto, K. Miyagawa, T. Yahagi, M. Todoriki, T. Nishimura, Y. Ohta, R. Hino, and S. Miura, “Development and Assessment of Real-Time Fault Model Estimation Routines in the GEONET Real-Time Processing System,” Int. Symp. on Geodesy for Earthquake and Natural Hazards (GENAH), Int. Association of Geodesy Symposia, Vol.145, pp. 89-96, 2015.
  16. [16] S. Kawamoto, Y. Hiyama, Y. Ohta, and T. Nishimura, “First result from the GEONET real-time analysis system (REGARD): the case of the 2016 Kumamoto earthquakes,” Earth, Planets and Space, Vol.68, No.190, doi:10.1186/s40623-016-0564-4, 2016.
  17. [17] Geospatial Information Authority of Japan, “Terms of service of GSI’s GNSS stations data,” http://datahouse1.gsi.go.jp/terras/terras_english.html [accessed November 1, 2017]
  18. [18] Geospatial Information Authority of Japan, “How to distinguish crustal deformation signal and noise in GEONET time series,” http://www.gsi.go.jp/kanshi/kentou.html [accessed November 1, 2017] (in Japanese)
  19. [19] Japan Association of Surveyors, “The GNSS-based control stations RINEX & BINEX data (1 second sampling),” http://www.jsurvey.jp/eng-data_rinex-1sec.htm [accessed November 1, 2017]
  20. [20] https://www.jenoba.jp/support/contact/,https://www.gpsdata.co.jp/contact_us/,https://www.terasat.co.jp/contact.html [accessed November 1, 2017] (in Japanese)
  21. [21] Geospatial Information Authority of Japan, “Crustal Deformation of Japan observed by GEONET (movie),” http://www.gsi.go.jp/kanshi/#5-2 [accessed November 1, 2017] (in Japanese)
  22. [22] T. Sagiya, “A decade of GEONET: 1994-2003 –The continuous GPS observation in Japan and its impact on earthquake studies–,” Earth, Planets and Space, Vol.56, pp. 29-41, 2004.
  23. [23] T. Sagiya, S. Miyazaki, and T. Tada, “Continuous GPS array and present-day crustal deformation of Japan,” Pure Appl. Geophys., Vol.157, pp. 2303-2322, 2000.
  24. [24] T. Nishimura, T. Matsuzawa, and K. Obara, “Detection of short-term slow slip events along the Nankai Trough, southwest Japan, using GNSS data,” J. Geophys. Res. Solid Earth, Vol.118, pp. 3112-3125, doi:10.1002/jgrb.50222, 2013.
  25. [25] A. Saito, M. Nishimura, M. Yamamoto, S. Fukao, T. Tsugawa, Y. Otsuka, S. Miyazaki, and M.C. Kelly, “Observations of traveling ionospheric disturbances and 3-m scale irregularities in the nighttime F-region ionosphere with the MU radar and a GPS network,” Earth, Planets and Space, Vol.54, pp. 31-44, 2002.
  26. [26] G. K. Seemala, M. Yamamoto, A. Saito, and C.-H. Chen, “Three-dimensional GPS ionospheric tomography over Japan using constrained least squares,” J. Geophys. Res. Space Physics, Vol.119, pp. 3044-3052, doi:10.1002/2013JA019582, 2014.
  27. [27] L. M. Rolland, P. Lognonné, E. Astafyeva, E. A. Kherani, N. Kobayashi, M. Mann, and H. Munekane, “The resonant response of the ionosphere imaged after the 2011 off the Pacific coast of Tohoku Earthquake,” Earth Planets Space, Vol.63, pp. 853-857, doi:10.5047/eps.2011.06.020, 2011.
  28. [28] Y. Hiyama, A. Yamagiwa, T. Kawahara, M. Iwata, Y. Fukuzaki, Y. Shouji, Y. Sato, T. Yutsudo, T. Sasaki, H. Shigematsu, H. Yamao, T. Inukai, M. Ohtaki, K. Kokado, S. Kurihara, I. Kimura, T. Tsutsumi, T. Yahagi, Y. Furuya, I. Kageyama, S. Kawamoto, K. Yamaguchi, H. Tsuji, and S. Matsumura, “Revision of Survey Results of Control Points after the 2011 off the Pacific Coast of Tohoku Earthquake,” Bulletin of the GSI, Vol.59, pp. 31-42, 2011.
  29. [29] M. Ishihara, Y. Abe, H. Tsuji, Y. Hatanaka, R. Saida, A. Yoshimura, and T. Sagiya, “Crustal Movements from the 1995 Hyogoken-Nanbu Earthquake Revealed by Geodetic Measurement,” J. of GSI, Vol.83, pp. 15-23, 1995 (in Japanese).
  30. [30] H. Tsuji, Y. Hatanaka, Y. Sato, T. Furuya, A. Suzuki, H. Muramatsu, T. Inukai, K. Mikihara, N. Takamatsu, T. Nakakuki1, S. Fujiwara, T. Imakiire, M. Tobita, and H. Yarai, “Effect of adjacent frequency signal on geodetic GNSS observation,” Japan Geoscience Union Meeting 2016, https://confit.atlas.jp/guide/event/jpgu2016/subject/SGD23-P07/detail?lang=en [accessed November 1, 2017]
  31. [31] T. Dambara, “A Revised Relation between the Area of the Crustal Deformation Associated with an Earthquake and Its Magnitude,” Report of The Coordinating Committee for Earthquake Prediction, Vol.21, pp. 167-169, 1979 (in Japanese).

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 18, 2024