single-jc.php

JACIII Vol.23 No.3 pp. 485-492
doi: 10.20965/jaciii.2019.p0485
(2019)

Paper:

Regularized Fuzzy c-Means Clustering and its Behavior at Point of Infinity

Yuchi Kanzawa* and Sadaaki Miyamoto**

*Shibaura Institute of Technology
3-7-5 Toyosu, Koto, Tokyo 135-8548, Japan

**University of Tsukuba
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

Received:
January 9, 2018
Accepted:
December 5, 2018
Published:
May 20, 2019
Keywords:
fuzzy clustering, regularization
Abstract

This study shows that a general regularized fuzzy c-means (rFCM) clustering algorithm, including some conventional clustering algorithms, can be constructed if a given regularizer function value, its derivative function value, and its inverse derivative function value can be calculated. Furthermore, the results of the study show that the behavior of the fuzzy classification function for rFCM at an infinity point is similar to that for some conventional clustering algorithms.

Fuzzy classification function of regularized fuzzy c-means clustering

Fuzzy classification function of regularized fuzzy c-means clustering

Cite this article as:
Y. Kanzawa and S. Miyamoto, “Regularized Fuzzy c-Means Clustering and its Behavior at Point of Infinity,” J. Adv. Comput. Intell. Intell. Inform., Vol.23 No.3, pp. 485-492, 2019.
Data files:
References
  1. [1] J. B. MacQueen, “Some Methods of Classification and Analysis of Multivariate Observations,” Proc. 5th Berkeley Symp. on Math. Stat. and Prob., pp. 281-297, 1967.
  2. [2] S. Miyamoto and M. Mukaidono, “Fuzzy c-Means as a Regularization and Maximum Entropy Approach,” Proc. 7th Int. Fuzzy Systems Association World Congress (IFSA’97), Vol.2, pp. 86-92, 1997.
  3. [3] S. Miyamoto and K. Umayahara, “Fuzzy Clustering by Quadratic Regularization,” Proc. 1998 IEEE Int. Conf. Fuzzy Syst., pp. 1394-1399, 1998.
  4. [4] Y. Kanzawa, “Generalization of Quadratic Regularized and Standard Fuzzy c-Means Clustering with respect to Regularization of Hard c-Means,” Lecture Notes in Computer Science, Vol.8234, pp. 152-165, 2013.
  5. [5] S. Miyamoto and K. Umayahara, “Methods in Hard and Fuzzy Clustering,” Z.-Q. Liu and S. Miyamoto (Eds.), Soft Computing and Human-Centered Machines, Springer-Verlag, Tokyo, 2000.
  6. [6] S. Miyamoto, H. Ichihashi, and K. Honda, “Algorithms for Fuzzy Clustering,” Springer, 2008.
  7. [7] C. C. Popescu, “A clustering model with Rényi entropy regularization,” Mathematical Reports, Vol.11, No.1, pp. 59-66, 2009.
  8. [8] J. Bezdek, “Pattern Recognition with Fuzzy Objective Function Algorithms,” Plenum Press, New York, 1981.
  9. [9] S. Miyamoto and N. Kurosawa, “Controlling Cluster Volume Sizes in Fuzzy c-means Clustering,” Proc. SCIS&ISIS2004, pp. 1-4, 2004.
  10. [10] H. Ichihashi, K. Honda, and N. Tani, “Gaussian Mixture PDF Approximation and Fuzzy c-means Clustering with Entropy Regularization,” Proc. 4th Asian Fuzzy System Symp., pp. 217-221, 2000.
  11. [11] I. S. Dhillon and D. S. Modha, “Concept Decompositions for Large Sparse Text Data Using Clustering,” Machine Learning, Vol.42, pp. 143-175, 2001.
  12. [12] S. Miyamoto and K. Mizutani, “Fuzzy Multiset Model and Methods of Nonlinear Document Clustering for Information Retrieval,” Lecture Notes in Computer Science, Vol.3131, pp. 273-283, 2004.
  13. [13] K. Mizutani, R. Inokuchi, and S. Miyamoto, “Algorithms of Nonlinear Document Clustering based on Fuzzy Set Model,” Int. J. of Intelligent Systems, Vol.23, No.2, pp. 176-198, 2008.
  14. [14] Y. Kanzawa, “On Kernelization for a Maximizing Model of Bezdek-like Spherical Fuzzy c-means Clustering,” Lecture Notes in Computer Science, Vol.8825, pp. 108-121, 2014.
  15. [15] Y. Kanzawa, “A Maximizing Model of Bezdek-like Spherical Fuzzy c-Means,” J. Adv. Comput. Intell. Intell. Inform., Vol.19, No.5, pp. 662-669, 2015.
  16. [16] Y. Kanzawa, “A Maximizing Model of Spherical Bezdek-type Fuzzy Multi-medoids Clustering,” J. Adv. Comput. Intell. Intell. Inform., Vol.19, No.6, pp. 738-746, 2015.
  17. [17] C. Oh, K. Honda, and H. Ichihashi, “Fuzzy Clustering for Categorical Multivariate Data,” Proc. IFSA World Congress and 20th NAFIPS Int. Conf., pp. 2154-2159, 2001.
  18. [18] K. Honda, S. Oshio, and A. Notsu, “FCM-type fuzzy co-clustering by K-L information regularization,” Proc. of 2014 IEEE Int. Conf. on Fuzzy Systems, pp. 2505-2510, 2014.
  19. [19] K. Honda, S. Oshio, and A. Notsu, “Item Membership Fuzzification in Fuzzy Co-clustering Based on Multinomial Mixture Concept,” Proc. of 2014 IEEE Int. Conf. on Granular Computing, pp. 94-99, 2014.
  20. [20] Y. Kanzawa, “Fuzzy Co-Clustering Algorithms Based on Fuzzy Relational Clustering and TIBA Imputation,” J. Adv. Comput. Intell. Intell. Inform., Vol.18, No.2, pp. 182-189, 2014.
  21. [21] Y. Kanzawa, “On Possibilistic Clustering Methods Based on Shannon/Tsallis-Entropy for Spherical Data and Categorical Multivariate Data,” Lecture Notes in Computer Science, Vol.9321, pp. 125-138, 2015.
  22. [22] Y. Kanzawa, “Bezdek-type Fuzzified Co-Clustering Algorithm,” J. Adv. Comput. Intell. Intell. Inform., Vol.19, No.6, pp. 852-860, 2015.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 22, 2024