Paper:

# Ordered Weighted Averages on Intervals and the Sub/Super-Additivity

## Yuji Yoshida

Faculty of Economics and Business Administration, University of Kitakyushu, 4-2-1 Kitagata, Kokuraminami, Kitakyushu 802-8577, Japan

*J. Adv. Comput. Intell. Intell. Inform.*, Vol.17 No.4, pp. 520-525, 2013.

- [1] G. Beliakov, A. Pradera, and T. Calvo, “Aggregation Functions: A Guide for Practitioners,” Springer, 2007.
- [2] T. Calvo, A. Kolesárová, M. Komorníková, and R. Mesiar, “Aggregation operators: Basic concepts, issues and properties,” in: T. Calvo, G. Mayor, and R. Mesiar (Eds.), Aggregation Operators: New Trends and Applications, pp. 3-104, Phisica-Verlag, Springer, 2002.
- [3] R. R. Yager, “Ordered weighted averaging aggregation operators in multi-criteria decision making,” IEEE Trans. on Systems, Man and Cybernetics, Int. J. of Intel. Syst., Vol.18, pp. 183-190, 1988.
- [4] R. R. Yager, “Families of OWA operators,” Fuzzy Sets and Systems, Vol.59, pp. 125-148, 1993.
- [5] R. R. Yager and D. P. Filev, “Parameterized and-like and or-like OWA opera-tors,” Int. J. of General Systems, Vol.22, pp. 297-316, 1994.
- [6] R. R. Yager, “OWA aggregation over a continuous interval argument with application to decision making,” IEEE Trans. on Systems, Man, and Cybern., Part B: Cybernetics, Vol.34, pp. 1952-1963, 2004.
- [7] R. R. Yager and Z. Xu, “The continuous order weighted geometric operator and its application to decision making,” Fuzzy Sets and Systems, Vol.157, pp. 1393-1402, 2006.
- [8] V. Torra, “The weighted OWA operator,” Int. J. of Intel. Syst., Vol.12, pp. 153-166, 1997.
- [9] V. Torra and Y. Narukawa, “Modeling Decisions – Information Fusion and Aggregation Operators,” Springer, 2002.
- [10] V. Torra and L. Godo, “Continuous WOWA operators with application to defuzzification,” Aggregation operators: New trends and applications, pp. 159-176, Physica-Verlag, Springer, 2002.
- [11] Y. Narukawa and V. Torra, “Continuous OWA Operator and its Calculation,” CD-ROM Proc., IFSA-EUSFLAT 2009, pp. 1132-1134, 2009.
- [12] Y. Narukawa, V. Torra, and M. Sugeno, “Choquet integral of a function on the real line,” in: V. Torra, Y. Narukawa, and M. Daumas (Eds.), Modeling Decisions for Artificial Intelligence 2010, CDROM Proc., MDAI 2010, pp. 24-33, 2010.
- [13] Y. Yoshida, “An ordered weighted average with a truncation weight on intervals,” in: V. Torra, Y. Narukawa, B. López, and M. Villaret (Eds.), MDAI 2012, LNAI, Vol.7647, pp. 45-55, Springer, Nov. 2012.
- [14] C. Dellacherie, “Quelques commentarires sur les prolongements de capacités,” Séminare de Probabilites 1969/1970, Strasbourg, Lecture Notes in Artificial Intelligence, Vol.191, pp. 77-81, Springer, 1971.
- [15] D. Renneberg, “Non Additive Measure and Integral,” Kluwer Academic Publ., Dordrecht, 1994.
- [16] P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath, “Thinking coherently,” Risk, Vol.10, pp. 68-71, 1997.
- [17] P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath, “Coherent measures of risk,” Mathematical Finance, Vol.9, pp. 203-228, 1999.
- [18] A. Meucci, “Risk and Asset Allocation,” Springer-Verlag, Heidelberg, 2005.
- [19] Y. Yoshida, “A perception-based portfolio under uncertainty: Minimization of average rates of falling,” in: V. Torra, Y. Narukawa, and M. Inuiguchi (Eds.), MDAI 2009, LNAI, Vol.5861, pp. 149-160, Springer, Nov. 2009.
- [20] Y. Yoshida, “An average value-at-risk portfolio model under uncertainty: A perception-based approach by fuzzy random variables,” J. of Advanced Computational Intelligence and Intelligent Informatics, Vol.15, pp. 56-62, 2011.
- [21] S. Kusuoka, “On law-invariant coherent risk measures,” Advances in Mathematical Economics, Vol.3, pp. 83-95, 2001.

This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.