Paper:
A Large-Scale Magnetostatic Analysis Using an Iterative Domain Decomposition Method Based on the Minimal Residual Method
Masao Ogino*, Shin-ichiro Sugimoto**, Seigo Terada***,
Yanqing Bao***, and Hiroshi Kanayama***
*Information Technology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
**Department of Systems Innovation, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
***Department of Mechanical Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- [1] A. Quarteroni and A. Vali, “Domain Decomposition Methods for Partial Differential Eequations,” Clarendon Press Oxford, 1999.
- [2] R. Shioya and G. Yagawa, “Iterative domain decomposition FEM with preconditioning technique for large scale problem,” ECM’99 Progress in Experimental and Computational Mechanics in Engineering and Material Behaviour, pp. 255-260, 1999.
- [3] A. M. M. Mukaddes, M. Ogino, H. Kanayama, and R. Shioya, “A scalable balancing domain decomposition based preconditioner for large scale heat transfer problems,” JSME Int. J. Series B, Vol.49, No.2, pp. 533-540, 2006.
- [4] B. Faucard, A. G. Sorguç, F. Magoulès, and I. Hagiwara, “Refining technique for multilevel graph k-partitioning and its application on domain decomposition non overlapping Schwarz technique for urban acoustic pollution,” Trans. of JSST, Vol.1, No.2, pp. 17-27, 2009.
- [5] H. Kanayama and S. Sugimoto, “Effectiveness of A-phi method in a parallel computing with an iterative domain decomposition method,” IEEE Trans. on Magnetics, Vol.42, No.4, pp. 539-542, 2006.
- [6] H. Kanayama, H. Zheng, and N. Maeno, “A domain decomposition method for large-scale 3-D nonlinear magnetostatic problems,” Theoretical and Applied Mechanics, Vol.52, pp. 247-254, 2003.
- [7] H. Kanayama, R. Shioya, D. Tagami, and H. Zheng, “A numerical procedure for 3-D nonlinear magnetostatic problems using the magnetic vector potential,” Theoretical and Applied Mechanics, Vol.50, pp. 411-418, 2001.
- [8] H. Kanayama, M. Ogino, S. Sugimoto, and J. Zhao, “Non-linear magnetostatic analysis of a 100 million DOF problem with hierarchical domain decomposition method,” Trans. of the Japan Society for Simulation Technology, Vol.2, No.1, pp. 1-8, 2009. (in Japanese)
- [9] E. F. Kaasschieter, “Preconditioned conjugate gradients for solving singular systems,” J. of Computational and Applied Mathematics, Vol.24, No.1-2, pp. 265-275, 1988.
- [10] H. A. Van der Vorst, “Iterative Krylov Methods for Large Linear Systems,” Cambridge University Press, 2003.
- [11] M. Mori, M. Sugihara, and K. Murota, “Linear Computation,” Iwanami Shoten, 1994. (in Japanese)
- [12] A. Greenbaum, “Iterative Methods for Solving Linear Systems,” SIAM, Philadelphia, 1997.
- [13] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear systems,” J. of Research of the National Bureau of Standards, Vol.49, pp. 409-436, 1952.
- [14] E. Stiefel, “Relaxationsmethoden bester strategie zur lösung linearer gleichungssysteme,” Commentarii Mathematici Helvetici, Vol.29, pp. 157-179, 1955.
- [15] C. C. Paige and M. A. Saunders, “Solution of sparse indefinite systems of linear equations,” SIAM J. Numer. Anal, Vol.12, No.4, pp. 617-629, 1975.
- [16] IEEJ, “IEEJ Technical Report No.486,” IEEJ, 1994. (in Japanese)
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.