Paper:
Error-Correcting Semi-Supervised Pattern Recognition with Mode Filter on Graphs
Weiwei Du* and Kiichi Urahama**
*Department of Information Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
**Department of Communication Design Science, Kyushu University, 4-9-1 Shiobaru, Minamiku, Fukuoka 815-8540, Japan
- [1] C. E. Brodley and M. A. Friedl., “Identifying and eliminating mislabeled training instances,” Proc. NCAI, pp. 799-805, 1996.
- [2] P. Hartono and S. Hashimoto, “Learning from imperfect data,” Applied Soft Comput., pp. 353-363, 2007.
- [3] U. Rebbapragada and C. E. Brodley, “Class noise mitigation through instance weighting,” Proc. ECML, pp. 708-715, 2007.
- [4] N. D. Lawrence and B. Scholkopf, “Estimating a kernel fisher discriminant in the presence of label noise,” Proc. ICML, pp. 306-313, 2001.
- [5] M. R. Amini and P. Gallinari, “Semi-supervised learning with an imperfect supervisor,” Know. Inf. Syst., pp. 385-413, 2005.
- [6] Y. Li, L. F. A.Wessels, D. de Ridder, andM. J. T. Reinders, “Classification in the presence of class noise using a probabilistic kernel fisher method,” Patt. Recog., pp. 3349-3357, 2007.
- [7] M. Belkin, I. Matveeva, and P. Niyogi, “Regularization and semisupervised learning on large graphs,” Proc.COLT, pp. 624-638, 2004.
- [8] J. van deWeijer and R. van den Boomgaard, “Local mode filtering,” Proc. CVPR, pp. 428-433, 2001.
- [9] W. Du and K. Urahama, “Error-correcting semi-supervised learning with mode-filter on graphs,” Proc. WS-LAVD in ICCV, 2009.
- [10] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning using Gaussian fields and harmonic functions,” Proc. ICML, pp. 912-919, 2003.
- [11] http://archive.ics.uci.edu/ml/datasets.html
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.