Paper:
Document Analysis System Based on Awareness Learning
Jie Ji*, Rung-Ching Chen**, and Qiangfu Zhao*
*System Intelligence Laboratory, The University of Aizu, Tsuruga, Ikki-machi, Aizu-Wakamatsu, Fukushima 965-8580, Japan
**College of Informatics, Chaoyang University of Technology, 168 Jifeng E. Rd., Wufeng District, Taichung City, Taiwan, R.O.C.
- [1] D. Bremner, E. Demaine, J. Erickson, J. Iacono, S. Langerman, P. Morin, and G. Toussaint, “Output-sensitive algorithms for computing nearest-neighbor decision boundaries,” Discrete and Computational Geometry Vol.33, No.4, pp. 593-604, 2005.
- [2] P. Hall, B. U. Park, and R. J. Samworth, “Choice of neighbor order in nearest-neighbor classification,” Annals of Statistics, Vol.36, No.5, pp. 2135-2152, 2008.
- [3] G. I. Webb, J. Boughton, and Z. Wang, “Not So Naive Bayes: Aggregating One-Dependence Estimators,”Machine Learning, Vol.58, No.1, pp. 5-24, 2005.
- [4] P. Domingos and M. Pazzani, “On the optimality of the simple Bayesian classifier under zero-one loss,”Machine Learning, Vol.29, pp. 103-137, 1997.
- [5] T. Ash, “Dynamic Node Creation in Back-propagation Networks,” Connection Science, Vol.1, No.4, pp. 365-375, 1989.
- [6] H. Hayashi and Q. F. Zhao, “Quick induction of NNTrees for text categorization based on discriminative multiple centroid approach,” Proc. of Int. Conf. on Systems Man and Cybernetics 2010, pp. 705-712, 2010.
- [7] D. Meyer, F. Leisch, and K. Hornik, “The support vector machine under test,” Neurocomputing, Vol.55, pp. 169-186, 2003.
- [8] L. Bauer, “Introducing linguistic morphology,” 2nd Ed., Washington, D.C., Georgetown University Press, 2003.
- [9] W. B. Frakes and R. Baeza-Yates, “Information Retrieval: Data Structures and Algorithms,” Prentice Hall, Englewood Cliffs, New Jersey, 1992.
- [10] G. Salton and C. Buckley, “Term-weighting approaches in automatic text retrieval,” Information Processing & Management, Vol.24, No.5, pp. 513-523, 1988.
- [11] I. S. Dhillon and D. S. Modha, “Concept Decompositions for Large Sparse Text Data Using Clustering,” Machine Learning, Vol.42, pp. 143-175, doi:10.1023/A:1007612920971, Jan. 2001.
- [12] G. Salton and M. J. McGill, “Introduction to Modern Retrieval,” McGraw-Hill Book Company, 1983.
- [13] J. Ji, Y. T. T. Chan, and Q. Zhao, “Fast Document Clustering Based on Weighted Comparative Advantage,” Proc. of 2009 IEEE Int. Conf. on Systems, Man & Cybernetics, pp. 541-546, San Antonio, USA, 2009.
- [14] M. Oster, R. Douglas, and S.-C. Liu, “Computation with spikes in a winner-take-all network,” Neural Computation, Vol.21, No.9, 2009.
- [15] S. Geva and J. Sitte, “Adaptive nearest neighbor pattern classification,” IEEE Trans. on Neural Networks, Vol.2, No.2, pp. 318-322, Mar. 1991.
- [16] J. Ji, T. Y. T. Chan, and Q. Zhao, “Clustering Large Sparse Text Data: A Comparative Advantage Approach,” J. of Information Processing, Vol.51, No.9, pp. 1930-1939, 2010.
- [17] J. Ji and Q. Zhao, “Supervised Weighted Comparative Advantage Classification Algorithm,” Proc. of 2010 Int. Symposium on Intelligent Systems, Japan, 2010.
- [18] The data base of SMART system, the University of Ceronell, USA.
ftp://ftp.cs.cornell.edu/pub/smart - [19] The home page of US National Science Foundation.
http://www.nsf.gov/awardsearch - [20] Tom Mitchell, UCI Machine Learning Repository.
http://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups - [21] The world-wide distributed discussion system.
http://www.usenet.com
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.