Paper:
KL-Divergence-Based and Manhattan Distance-Based Semisupervised Entropy-Regularized Fuzzy c-Means
Yuchi Kanzawa*, Yasunori Endo**, and Sadaaki Miyamoto**
*Shibaura Institute of Technology, 3-7-5 Toyosu, Koto, Tokyo 135-8548, Japan
**University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
- [1] J. P. Bezdek, “Pattern Recognition with Fuzzy Objective Function Algorithms,” Plenum, New York, 1981.
- [2] S. Miyamoto and K. Umayahara, “Methods in Hard and Fuzzy Clustering,” in: Z.-Q. Liu and S. Miyamoto (Eds.), Soft computing and human-centered machines, Springer-Verlag Tokyo, 2000.
- [3] W. Pedrycz, “Algorithms of Fuzzy Clustering with Partial Supervision,” Pattern Recognition Letter, Vol.3, pp. 13-20, 1985.
- [4] M. Yamazaki, S. Miyamoto, and I.-J. Lee, “Semi-supervised Clustering with Two Types of Additional Functions,” Proc. 24th Fuzzy System Symp., 2E2-01, 2009.
- [5] M. Yamashiro, Y. Endo, Y. Hamasuna, and S. Miyamoto, “A Study on Semi-supervised Fuzzy c-Means,” Proc. 24th Fuzzy System Symp., 2E3-04, 2009.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.